
 1

CONTROL
PROGAM
DEVELOPER

CPDev

PROGRAMMING INSTRUCTION

 2

CONTENTS

• CPDev installation ...1

• Startup. Menu. Tools ...3
Startup ...3
Menu and toolbar ..3
Environment options ..6
Global settings ...8

• New project – START_STOP ...10
START_STOP system ..10
Create a project ...11
New file ..11
Project name ...11
Global variables ...13
Program ...16
Task ...18
Save project in XML file ..19
Compilation ...19
Save and close the project ..21

• Library timers ...22
Delayed switchings ..22
Open existing project ...22
IEC_61131 standard library ..23
Extension of START_STOP project ..24
Individual declaration of global variable ..26
Project report ...27

• Project simulation ...29
Run CPSim simulator ..29
Simulator window ..30
CPSim menu ...31
Toolbar ..31
Start, stop and pause ..31
Variable list ..32
Variable views (individual windows) ..33
Group panels ...34
Program options ..35

• RTC clock ...37
Problem description ...37
RTC project ...38
Simulation ..39

• User–defined library ..41
Library as a project ..41
FB_AVERAGE ..42
FB_PULSE ..43
Library export ..45
Testing ...48
Library extension ...49

• ST language overview ...50
IEC 61131–3 standard ..50
Data types and variables ...51
Programming in ST ...55

 3

• Functions ...58
Mathematic and logic functions ...58
Selections functions ..59
Conversions ..59
Real time ...60
Daytime and date components ...60
Status word ...61

• Function block libraries ..62
IEC_61131 library ..62
Basic_blocks library ...64
System blocks ..67

• Supplements ..68
Correcting variable list ...68
Filling empty areas ..69
Marks ...69
Key shortcuts ...70
Errors, warnings, hints ...70
Compiler directives ..71
Simulation session ..72
CPDev files ..73

• Source codes of standard blocks ..74

September 2009

Rzeszow University of Technology, Poland
CPDev development has been supported by MNiSW R02 058 03 grant.

 1

CPDev INSTALLATION

Operating system

Windows (32 bit / 64 bit) 8/7/Vista/XP/2000/98 SE

Microsoft prerequisites

Microsoft .NET Framework 2.0
Microsoft Visual C++ 2005 (SP1) Redistributable

Remark. SP1 is not available in Windows 98; CPDev functionality restricted a
little.

Installation program

cpdev-company-1.0.1.13.exe, possibly with updated number.

Language selection

The language applies for the setup and application folders. Interface language is
initially chosen according to the following table. It can be changed in Global settings
(Tools menu).

Installation Interface

English English
Polish Polish
Dutch English

Installation steps

Typical for Windows programs.

 2

Installation options

Reset configuration … restores default configuration (Environment options in Tools).
Reset is necessary if the following items have been changed:
1) Installation language (directory names changed)
2) Recipient group (Praxis, Lumel, Univ)

Remark. Screen windows presented here correspond to 96 dpi (normal font).
They may be slightly different for other sizes.

Uninstall

Available from Start menu.

Uninstallation does not remove user configuration files from Local/ApplicationData
folder (see ev. CSIDL Values in Microsoft documentation).

 3

STARTUP. MENU. TOOLS

Startup

CPDev starts automatically if Launch CPDev is selected during installation. Start
menu or desktop icon trigger standard startups.

Remark. Nonstandard startups with additional parameters can be executed
from directory in which CPDev is installed. Otherwise error of loading external
modules appears.

The startup displays CPDev interface window whose left part will present project tree,
middle one program code, and bottom part compiler messages.

Menu and toolbar

 New Open Save Print

 Print preview Help Find text

 Build Start simulator Start configurer

 4

Manu and toolbar functionality is typical for Windows programs.

File Edit

Some of the items remain inactive until a project is open. Print prints project report
and source codes (print preview has not been implemented yet.) Copy and Paste,
besides standard text operations, handle items from project tree (POU units, global
variables, etc.). Find looks for text written in the toolbar cell.

View

Press Alt+0 to get quickly to project tree, Alt+1 to program window, and Alt+2 to
message list.

Project

The option handles final stages of the project. Build compiles open project or its
element. Clear removes intermediate files created automatically during compilation,
leaving only two necessary (.xml, .xmc; see Supplements). Simulator and hardware
configurer can be run after compilation. Item adds, removes, etc. project elements.

 5

Export, Import deal with libraries (.lcp) or external files with ST programs (.cst). Tools
edit list of global variables, present compilation report, and open project folder in
Windows explorer.

Contents of the last three options look as follows:

Tools Window Help

 6

Tools configure environment, determine global settings, and run compiler, simulator
and configurer standalone for working with external files (.cst, .dcp, .dcp or .xmc).
Window arranges interface. Help accesses programming instruction, information
materials with function, function blocks, and notes For advanced users. It also
indicates whether CPDev has been updated.

Environment options

Configuration window with a few tabs is displayed.

Projects

Path to a file with Virtual Machine specification (runtime) is provided. Use… option
must remain selected (default) for single task VM. Optimization level 1 is normal (ev.
see For advanced users).

The tab also indicates which libraries should be automatically imported into new

projects. Button adds library from Libraries folder. removes selected library.

Editing

Single and Double colorable modes show keywords in different colors. Single
(default) provides additional autocomplete help to finish names of variables, functions,
etc. (Supplements). Auto synchronization… unifies names of the same elements in
different parts of the project.

 7

Colors

Scheme of editor colors, text attributes, etc., together with example of colored code,
is shown below.

Miscellaneous

Size of Recent files list is determined. Bold characters distinguish active project for
selected POU. Ask, or not, before opening the stored report in default browser.
Replace Virtual Machine specification file by default (from Projects tab). For a global
variable, the project tree may show type, three addresses and comment.

 8

Compiler

Align addresses avoids overlapping of variables. C++ and nested comments may be
accepted. Configuration of visualization package, e.g. InTouch, requires Modbus
addresses (for SMC controller).

Global settings

They affect three CPDev programs, i.e. compiler, simulator and configurer. Selection
of Global settings (in Tools) opens CPDev package configuration window with three
tabs.

Communications

PC port for communication with the controller is configured according to
Communication settings. If the controller is connected via USB, Windows Device
manager determines port number. SMC controller settings define controller number
for PC and parameters for communication with distributed I/O modules or other field
devices. The 8N1 mode denotes 8 data bits, odd parity (N) and 1 stop bit.

 9

User interface

Interface language of CPDev package is chosen.

Update

The tab determines configuration to check whether new version of CPDev has
appeared on the update server.

Remark. Passwords of the update and proxy users are not encoded, so should
be erased after checking the update.

 10

NEW PROJECT – START_STOP

START_STOP system

The objective is to turn a motor on and off. Sample control diagrams are shown
below.

Functions block diagram

Ladder diagram

START, STOP and ALARM inputs are acquired by the controller from binary input
module. MOTOR output is sent from the controller to binary output module. The
following addresses are assigned to variables.

START 0000

STOP 0001

ALARM 0002

The adjacent three addresses indicate that START, STOP and ALARM will be read
in one command or message. All signals correspond directly to hardware, so they will
be declared as global variables.

Remark. The START_STOP system can also be implemented by means of RS
flip–flop, with START connected to S input and STOP plus ALARM to R.

MOTOR 0008

OR

AND START

ALARM

STOP

START MOTOR

MOTOR

STOP ALARM

MOTOR

 11

Create a project

First open a new folder, e.g. START_STOP, for all files of the project. Steps
executed by CPDev are then as follows:

1. Create a new file
2. Give name to the project
3. Declare global variables
4. Enter the program
5. Declare task
6. Compile the program
7. Save the source code in XML file
8. Close the project

Entering the program may precede declaration of variables. Closing the project saves
all files in the project folder including binary code (.xcp) and data file (.dcp) for
simulator and configurer.

New file

• File > New (Ctrl+N)

 or in toolbar.

Empty NoName project appears in the project tree.

Project name

The project is given the name START_STOP entered in Project properties window.

• Project tree > Select the project (NoName)
Project properties can be opened in four ways:

1) Context menu > Properties

2) Project > Options

 12

3) Project > Item > Properties

4) Alt + Enter

• Enter the name and eventually fill other information cells of Project properties
(created and compiled are filled automatically). The name must be correct
identifier in ST, so without spaces inside or digits at the beginning (see ST
language overview).

 13

After OK the new name appears in the project tree.

The contents of Version, Manager and Company cells will be downloaded to the
controller together with the program. By reading it back you can always find out what
program is executed.

Global variables

Global variables can be used in all programs of the project. Three ways of
declaration are available:
1) Global variable list
2) Individual declaration of each variable
3) VAR_GLOBAL declaration before the program.
The first way is most common. Individual declarations are described in the next
section. VAR_GLOBAL before program, requires changes of a few options (see For
advanced users).

Global variable list

• Open the list in one of two ways:

1) Select Global variables (project tree) > Context menu >
Edit variable list

 14

2) Project > Tools > Global variables

Empty list is displayed.

• Group of variables, type
The group consists of variables of the same type with adjacent addresses, so
START, STOP and ALARM here. Names are entered in Name cell, Type selected
from drop–down list or typed in (type first characters, press the arrow ↓ and the
editor will match the rest).

Remark. STRING, USINT, UINT, UDINT and ULINT types are not implemented
yet.

• Address
Selection of Address option automatically fills the cell with first unoccupied
address, so 0000 here. For types other than BOOL, the address begins with the
sign % and size prefix (ST language overview). If Address is not selected, the
variables are located automatically.

• Constant, retain
Attribute CONSTANT declares a variable which does not change during program
execution, and RETAIN a variable whose last value is kept in memory despite
power failure.

• Initial value
If the option is not selected, the variable is set initially to default value (usually
zero). For RETAIN variable the initial value applies for cold start only (i.e. after
downloading the program). In case of warm restart (power resumed), the last
value kept in memory is used. Non RETAIN variables are set to initial values both
during cold start and warm restarts.

 15

• Comment
Text from the cell is displayed in the project tree and in autocomplete hints
(Ctrl+space).

• Add
Pressing the button fills the list with declared variables. If the Address option is not
selected, text auto appears in the last column.

• OK closes the window. START, STOP and ALARM appear in Global variables
section of the project tree.

The variables involve type, physical and logical addresses (or auto), and ev.
comment.

• MOTOR variable
It could not be declared in the previous group since its address is not adjacent
(0008). Select Address and enter 0008 instead of initial 0003.

After Add and OK, MOTOR shows up in the project tree.

Replace, Remove

Selecting a variable in the list recreates its name, type and attributes in the upper
cells. To make corrections, enter new data and press Replace. Remove deletes
selected variable. Selection of a few variables (Shift or Ctrl) recreates only those
parameters which are the same. New entry and Replace makes change in all
selected variables.

 16

Remark. The CPDev package provides first free address for the group being
declared, but does not check whether the whole group fits into the area before
variables placed further down (if any). In case of collision the overlapping
variables are shown in red.

Program

Name of the program is entered in Program properties window.

Program name and preview

• Select the project > Context menu > Add item > Program

The window can also be opened by:

Select POU > Context menu > Add > Program

• Enter program name, here PRG_START_STOP (initial PRG is left to distinguish
program from the project). Due to Auto synchronization of project names
(Environment options) the name appears simultaneously in the line 001 of the
code field.

 17

OK. The project tree involves PRG_START_STOP in POU section.

• Double click PRG_START_STOP.

The program window in edit mode is displayed (Automatically unlock window for
editing).

Enter the code

• Code of PRG_START_STOP is shown below. VAR_EXTERNAL declarations
indicate that the global variables START, STOP, ALARM and MOTOR are used in
the program. Body involves single assignment statement with expression
corresponding to control diagrams at the beginning.

While entering the code, functionally different elements are shown in different colors
and ev. bold. The editor is equipped with a number of useful shortcuts (Supplements).

Remark. The code can also be entered in Program properties window.

 18

Preview vs. editing

Program and other elements of the project may be inspected in preview mode,
protected against modifications. Preview is activated by:

• Select the program > Project > Item > Lock (Ctrl+D)

Return to edit mode is similar.

• Project > Item > Unlock (Ctrl+E)

Task

Single task is available in the current version of CPDev. Name of the task and
programs are declared in Task properties window.

• Select the project > Context menu > Add item > Task

• Task name and type. Cycle time
Fill appropriate cells, i.e. with TSK_START_STOP, Cyclic and 200 ms here. As
soon as possible means that immediately after completing one execution, another
begins (so–called PLC mode).

• Select PRG_START_STOP from Available programs and with upper buttons
transfer it to Executed programs.

 19

OK
TSK_START_STOP appears in Tasks section of the project tree.

Remarks. Programs stored in linked libraries (if any) appear in Available
programs. A program repeated in Executed programs is executed more often.

Save project in XML file

New project must be saved in XML file before compilation. Recall that the
START_STOP folder has been opened at the beginning for all files of the project.
Current code is saved in Start–Stop.xml file in that folder.

• File > Save (Ctrl+S) or

 [Windows XP]

.xml extension is provided automatically.

Compilation

The program is compiled to universal executable code in binary format for virtual
machine (runtime).

• Select the project (or any element of it) > Project > Build (F6)

 20

Message window shows compilation results.

Global variables declared without addresses obtain physical addresses seen in the
project tree, in parentheses. Logical addresses are still denoted by auto.

Error and warnings

Error is indicated by red cross with corresponding description. Double click the
description and program code is displayed with cursor in the line with the error (most
probably). Errors caused by other reasons than violation of ST syntax are indicated
at the beginning (line 0 or -1).

Yellow ”road” sign indicates warnings. If, for instance, ALARM were assigned the
address 0001 (as STOP), the following warning would appear.

Double click the warning to open Global variable properties individual window for
ALARM.

The address must be replaced and accepted.

 21

Group correction of global variable list is also possible (Supplements).

Save and close the project

The project is saved both in binary format (.xcp) and semi–compiled form (.dcp) for
simulation and hardware configuration. Some intermediate files are also saved.

• Select the project > File > Save (Ctrl+S)

• File > Close
CPDev – closing the project window is displayed with Save changes question and
information on file location.

The question is asked even if no changes have been made (see For advanced
users to remove it).

Remark. The START_STOP project will be extended in the next section, so it is
closed here solely for demonstration.

 22

LIBRARY TIMERS

Delayed switchings

The START_STOP system will be extended by turning a pump on and off 5 seconds
after the motor. The IEC 61131–3 standard defines a set of function blocks including
three timers. Two of them will be used here:

 TON – on–delay
 TOF – off–delay.

Input/output symbols, types and time diagrams are shown below.

ININ

PTPT

 Q Q

ETET

TOFTON

BOOLBOOL BOOLBOOL

TIMETIME TIMETIME

ININ

QQ
PT

PT

ETET

Let the instances of TON and TOF be declared as ON_DELAY and OFF_DELAY.
The former program will be extended by statements implementing cascade
connection of the following blocks.

The PUMP signal will be sent to the same binary output module as MOTOR, so its
logic address is 0009.

Open existing project

• File > Open (Ctrl+O) or

Find START_STOP folder and open Start_Stop.xml file.

The project tree appears in interface window.

IN IN

PT PT
 Q Q

ET ET

TOF TON

OFF_DELAY

MOTOR

ON_DELAY

PUMP

t#5s t#5s

 23

IEC_61131 standard library

The timers TON, TOF are stored in CPDev IEC_61131 library (linked to the project
by Environment options > Projects).

Library content is displayed by unfolding the tree (above) or opening Library
properties window.

• Select IEC_61131 library > Context menu > Properties

Remark. Time of the last compilation of the library is given in Version.

 24

• Buttons

 − selects a library (transfers to Libraries folder)

 − reverses selections of all objects

 − shows declaration of selected object

 − reverses selections of function blocks

 − as above, for programs, functions and global variables,
respectively.

The button is active only while exporting or importing the library (Project >
Export/Import > Library).

• Timers TON, TOF

Remove selections of other blocks than TON, TOF.

Compiler links only those objects which are selected.

Extension of START_STOP project

The PRG_START_STOP program will be extended and variable PUMP declared.

Program

• Double click the program PRG_START_STOP in the project tree.

Supplement the code with:
– declarations of the instances ON_DELAY, OFF_DELAY
– declaration of the use of global variable PUMP
– statements corresponding to the cascade connection of the blocks and

assignment to PUMP.

 25

Optional directives (*$READ*), (*$WRITE*) assure ”read–only” and ”write–only”
properties of declared variables. Input/output structure of function block can be
recalled as tip in the project tree, or in the main window by selecting the block and
clicking Enter.

Remark. The two lines 19, 20 in the program code can be replaced by single
one by using internal assignment Q=>PUMP.

Autocomplete

Name of type, function, variable, etc. may be automatically completed after writing at
least one character, but only if the project at current stage has been compiled to
acquire the names (Build). Pressing Ctrl + space generates list of names with the
same beginning.

 26

New global variable

• Select Global variables > Context menu > Edit variable list

Fill in upper cells and press Add.

Compilation

• Select START_STOP project

• Project > Build

Individual declaration of global variable

The variable PUMP can be also declared individually, what may be more convenient
sometimes.

• Two ways are available:

1) Select START_STOP project > Context menu > Add item > Global variable

2) Select Global variables > Add variable

• Upper part of Global variable properties window should be filled in as before, lower
part is updated automatically.

 27

Recall that this window is also used to correct overlapping addresses.

• After OK the project tree is supplemented with PUMP.

Project report

• Project > Tools > Report

Full name column involves variable names preceded by project name (also in case
of tasks).

 28

Sorting

Initial order of variables in the report corresponds to declarations. This may be
changed by clicking header of a column what shows the sign of increasing or
decreasing sorting. Depending on the column, the sorting may be either
alphabetic or numeric. The first one is shown below.

HTML report file

Click Save to file in the previous window to save the report in HTML format.

Project save

• File > Save (Ctrl+S)

Remark. The window indicating the path is not called up now since location of
the file has been determined already (previous Save).

 29

PROJECT SIMULATION

The purpose is to check operation of the project before final implementation. Both
off–line and on–line tests can be carried out.

Run CPSim simulator

Three ways are available:

1) CPDev menu: Project > Run simulator

2) CPDev menu: Tools > Simulator

3) Start menu: CPDev > CPSim

The first way is used directly after compilation (Project > Build), what creates .dcp file
read automatically by CPSim. The next two ways require opening the .dcp file from
CPSim window.

 30

Open file for simulation

• File > Open DCP file or (CPSim menu or toolbar, see below)

Remark. If the project has been simulated already and session data saved, the
question Do you want to open saved session as well ? is displayed.

Simulator window

The window consists of two parts:
– variable tree
– view area

The variable tree differs a little from the project tree before. The view area presents
initially the list of global variables or collection of individual windows for such
variables (also called variable views). Panels for groups of variables or additional lists
can also be placed in the view area. Scroll bars provide access to components
outside (if any).

 31

CPSim menu

 File Trace

 View Tools Window

Simulation session data can be saved in a file to repeat it later. Trace controls CPSim
operation, so starts or stops it reads (Supplements) or logs variables, and selects
data source, i.e. either Simulator (off–line) or Modbus–SMC (on–line). Window >
Arrange places individual windows side–by–side.

Toolbar

 Open DCP file Open session Save current session Group panel

 Arrange windows Start trace Stop trace Pause or resume trace

 Start program & reset RETAIN variables

Start, stop and pause

• Trace > Start or

Simulation begins from initial values of variables (as first start after downloading
the program into the controller). View area shows the results.

 32

Bottom bar indicates simulation progress.

• Trace > Stop or

This corresponds to power brake in real controller, so last values of RETAIN
variables are saved.

• Another Trace > Start or

Warm restart after power brake is simulated, so RETAIN variables are set to last
values and non–RETAINs to initial.

• Pause or resume trace

Simulation stops and resumes without any change of variable values.

• Trace > Cold start or

This represents cold start, so simulation begins from initial values of all variables
(as first start after downloading).

Variable list

• Enter value or variable

– Select corresponding cell

– Click for editing

– Enter new value, press Enter

Values after 5 seconds since 1 has been entered for START are shown below.
MOTOR and PUMP are turned on.

 33

• Add variable
Select variable in the tree, drag it to the list and drop (keeping pressed left key of
the mouse).

• Remove variable
Select line > Context menu > Remove

Variable views (individual windows)

• Add view
– Select variable in the tree.
– View of the variable can be opened in three ways:

1) Drag–and–drop the variable in view area.
2) Menu: View > Variable view.
3) Context menu: Variable view.

Variable view for MOTOR is shown below.

 34

New values are entered in the same way as in the list.

• Close view
Click

• Additional information on variable
Click to show lower part of the variable view, with type, address and full name.

Group panels

Two kinds of group panels are available:
– control panels
– variable lists.
Variable lists look the same as the list of global variables before. Panels with control
elements are created as follows:

• View > Group panel or
Panel properties window is displayed.

• Enter name, select Control elements, press OK.

Empty panel with the name (INPUTS) appears in the view area.

 35

• Fill in the panel with appropriate variables by drag–and–drop from the tree. Panel
grows automatically. Boolean variables are represented by rectangles, variables of
other types by text cells.

Panel in trace mode

Colors of rectangles depend on values. Click the rectangle to reverse value.

Program options

• Selecting Tools > Program options opens the window with four tabs.

• Session

The option Open global variable views automatically opens either the list (default) or
collection of individual windows. The number of such windows may be limited for
large projects. The question Do you want to open saved session as well ? asked at
the beginning is dropped if the option Always open SCP session file … is selected.
Open variable views in advanced mode opens lower parts of individual windows.

 36

• Input file

The tab defines .inp file for simulation controlled automatically (Supplements). Path

to the file can be chosen by pressing or entered directly.

• Output file
Simulation results may be recorded in .out file (default name as project file name). If
the file exists already, its content may be overwritten or appended.

• Data source
The tab is equivalent to Tracking > Data source in the menu, so it selects either off–
line simulation or on–line commissioning (for SMC controller). Communication
parameters can be checked by pressing Configure.

 37

RTC CLOCK

Problem description

Temperature in an apartment must be kept at given level SP (Set Point), higher
during the day, e.g. 22°C, lower at night, 18°C. Actual temperature PV (Process
Variable) is measured by analog input. If SP>PV, heating furnace is turned on by
Control Variable CVF (CV Furnace) from binary output, and if SP>PV the furnace is
turned off. However, to avoid frequent switchings, the furnace can be turned on again
only if the temperature PV drops below SP by at least 0.5°C (hysteresis). Circulation
pump, controlled by the output CVP (CV Pump), is turned on all time during the day,
and at night when the furnace is on and between the hours 23.00 and 1.00, no matter
whether the furnace is on or off (the day is understood as the period between 6.00
and 20.00).

Sample diagrams

Control system

The controller CNT measures the temperature PV and controls the furnace and
pump by the outputs CVF, CVP. It also communicates with PC computer, which:
– sets the set point SP,
– monitors the variables PV, CVF, CVP.
Temperatures at the controller side are denoted by SP, PV and at PC side by SP_,
PV_ (different formats).

CPDev
SCADA

�

CNT

AI BO

CVF
CVP

USB

SP_, PV_,
CVF, CVP

PC

PV

SP, PV,
CVF, CVP

 38

Analog input

Temperature in the range 0...100°C is measured by a transmitter with voltage output
0...10V. A/D converter converts the voltage to REAL number PV in 0.0…10.0.

Communications

Assume that PC and the controller can exchange data of the types BOOL and INT
only. So the temperatures SP_, PV_ at PC side are INT variables. Accuracy 0.1°C is
required, so the range of SP_, PV_ corresponding to 0...100°C, is 0...1000
(SP=SP_/100, PV_=PV · 100). For instance, the set point 20°C is represented by
SP_=200 in PC and by SP=2.0 in the controller.

RTC project

Global variables

Note that corresponding pairs of variables can be declared as groups.

Set point temperature SP_ received from PC is declared as RETAIN, with initial value
200. So SP_ will be kept in memory despite power failure (warm restart) or
communication brake. From SP_=200 (20ºC) the controller will begin operation after
downloading the program (cold start).

Program

PRG_RTC program of RTC project is shown below. Comments seen in the project
tree are entered during declaration of variables. The task TSK_RTC is executed
every 200 ms.

 39

The directive (*$AUTO*) after VAR_EXTERNAL automatically includes Global
variable list into compiled program. Two local variables, C_DATE and C_TIME,
are declared.

Statements in the lines

11: conversion of INT value received from PC into REAL, followed by
adjustment of the range.

13: setting current date–and–time C_DATE to value returned by system
function GET_TST() which reads the controller’s RTC clock when the task
begins (Get Task Time). Separation of current time C_TIME from C_DATE
by DT_TO_TOD() conversion (Day_and_Time To Time_of_Day).

15: determination of the furnace control CVF by comparison of measurement
PV and set point SP temperatures, taking into account 0.5ºC drop after
turning the furnace off.

17: determination of the pump control CVP, switched on all time during the
day, at night between 23.00 and 1.00 and when the furnace is on.

21: conversion of REAL to INT after adjustment of the range, to be read by PC.

Simulation

The window shown below corresponds to 9 a.m. The measured temperature 16°C is
lower than the set point 20°C, so the furnace is turned on. Pump is also on (daytime).
Individual window for the set point SP (controller side) is shown under the list.

 40

 41

USER–DEFINED LIBRARY

Library as a project

A library with two function blocks will be created:

• FB_AVERAGE – average of three inputs

0.3

321 INININ
OUT

++=

• FB_PULSE – single pulse after time T since rising edge appeared at the input

1cycle

Q

IN

T

Pulse may be generated by the following block diagram:

CLK Q
R_TRIG

 S
 R1

Q1
RS

IN
PT

Q
TON Q

ET

IN

T

User library is created as a new project with programs, function blocks,
functions and global variables (or only some of them).

New project

• File > New

NoName appears in the project tree.

• NoName > Context menu > Properties

Enter name in Project properties, for instance PROJ_MY_BLOCKS.

 42

New function block

• POU > Context menu > Add > Function block

FB_AVERAGE

• Name

Enter FB_AVERAGE. OK inserts the block into project tree.

• Code
Double click FB_AVERAGE to open editor window. Directive (*$COMMENT*) is
particularly useful for user libraries.

 43

• Compilation
Project > Build

Correct errors, if any.

Function instead of a block

Since FB_AVERAGE does not store internal state, it may be replaced by a function.

Remaining steps are the same.

FB_PULSE

Blocks from IEC_61131 library will be used to implement the diagram shown at the
beginning.

• Code – part I
Local declarations define block instances.

 44

• Input/output names

Sometimes you may need to recall declarations of library blocks for input/output
names. This can be done in two ways:

1) Select block in the library folder in project tree. Tip with input/output declarations
is briefly presented.

2) Select the block and press Ctrl+I to get permanent window with the declarations.

• Code – part II
While entering the code, autocomplete option of CPDev editor is available. Ctrl +
space opens autocomplete list.

Compilation of the project after declarations is needed to build up the list (see
Supplements). Enter inserts selected word and closes the list; you may also click
the word or click outside. Esc closes the list as well.

 45

Final code of FB_PULSE is shown below.

• Compilation

Remark. You could now write a test program as additional POU unit and run it
using simulator. However, it will be more natural from user viewpoint if we first
export the project as a library, and test it later in another project.

Library export

The project will be exported as semi–compiled library.

• Project > Export > Library

Project name is temporarily used as library name.

 46

• Library name
Enter proper name, here My_blocks, version number and eventually fill in other
cells (menu path is reserved for future use in FBD diagrams).

• Library file location

– Click
– Select target folder, usually Libraries, enter name of library file with .lcp

extension, here My_blocks.lcp, and save.

 47

Filename may be the same as library name (but does not have to).

• Objects for export
Options on the left side select exported objects (both here). Button Toggle all
toggles selected/non–selected, Interface recalls input/output declarations, four
buttons below select function blocks, programs, functions, and global variables.

• Semi–compilation
OK compiles selected objects into semi–compiled from (.lcp extension; Project >
Build produces binary code). Warnings on non–imported dependencies are not
relevant.

If no error occurs, My_blocks.lcp is saved in Libraries folder.

• File > Save
 The original project PROJ_MY_BLOCKS is saved

 in .xml file, for instance in Proj_My_blocks.xml here.

Library source code as XML file with original project should be
saved for future use.

 48

Testing

Separate project, here Test_My_blocks, is created. The block FB_AVERAGE will be
tested by sample input data and FB_PULSE by counting number of pulses with CTU
standard counter.

• Global variable list

A, B, C are inputs and D output of FB_AVERAGE, E input to FB_PULSE, and F
output of CTU.

• Test program

The project Test_My_blocks uses two libraries, IEC_61131 and My_blocks. The
first one is required by the second as dependent library. FB_PULSE and CTU are
connected by local variable P2C.

 49

• Simulation
Compile Test_My_blocks, run CPSim, enter 1, 2, 3 for A, B, C, and set E five
times alternately to 0, 1. The variable list of the simulator looks then as follows:

Library extension

It is done by supplementing the library source code (Proj_My_Blocks.xml) with new
components. Export of the extended library is repeated by Project > Export >
Libraries. Previous content of semi–compiled file (My_blocks.lcp) is replaced by the
new one in Libraries.

 50

ST LANGUAGE OVERVIEW

This overview is for the readers with some experience in high level language
programming (C, Pascal, scripts). More on ST can be found in John K. H. and
Tiegelkamp M.: IEC 61131–3: Programming Industrial Automation Systems, Springer,
2001, or elsewhere.

IEC 61131-3 standard

Programming languages

The IEC 61131-3 standard (IEC below) defines five languages for controller
programming:
– structured text ST – function block diagram FBD
– instruction list IL – sequential function chart SFC
– ladder diagram LD
ST, a high level language similar to Pascal, is a basis for CPDev package.

Language components

Common components of the five languages are the following:
– data types, e.g. BOOL, INT, REAL
– program organization units POU
– configuration elements.

POU units

Three kinds of POUs are defined in IEC:
– programs – functions blocks – functions
Whereas a function for the same input data always yields the same output, output of
a block may be different, as it depends on actual state of this block. Therefore
declaration of block instance to allocate memory for the state must precede usage of
the block.

Configuration elements

Installation and configuration of programs is supported by:
– configuration – tasks – access paths
– resources – global variables
Configuration is called a project in CPDev. Tasks and global variables are sufficient
for configuration of single controller. Programs belong to tasks.

Structure of POUs

Structure of programs, functions and function blocks is the same, i.e.:
– POU type and name
– declaration of variables and function block instances
– program code
PROGRAM, FUNCTION BLOCK and FUNCTION keywords define POU type. Global
and local variables are declared separately. Block instances are declared together
with local variables (within VAR…END_VAR).

 51

Identifiers (names)

They begin with a letter or underscore sign _. IEC standard does not make difference
between lower and upper case letters, even in keywords. So the following identifiers
(names) are the same: 1) START, Start, start (variable), 2) THEN, Then, then, 3)
END_VAR, end_var.

CPDev automatically converts lower case letters into upper case (although the editor
still shows them as originally entered).

Identical names in different libraries

Names must be unique within a project or library. If the same name, e.g. TON,
denotes another block in another library than IEC_61131, declarations of
corresponding instances in the program must indicate the library, so:

IEC_61131.TON Another_lib.TON

Otherwise Multiple name found or Ambiguous... error appears. Actual name
preceded by name of the project or library is called full name in CPDev.

Data types and variables

Elementary data types

No. Name Data types Size and range

1 BOOL Boolean 1B (FALSE, TRUE ⇔ 0,1)
2 BYTE byte 1B (0 ... 255)
3 WORD word 2B (0 ... 65535)
4 DWORD double word 4B (0 ... 232-1)
5 LWORD long word 8B (0 ... 264-1)
6 SINT short integer 1B (-128 ... 127)
7 INT integer 2B (-32768 ... 32767)
8 DINT double integer 4B (-231 ... 231-1)
9 LINT long integer 8B (-263 ... 263-1)

10 USINT unsigned short
integer

1B (0 ... 255)

11 UINT unsigned integer 2B (0 ... 65535)
12 UDINT unsigned double

integer
4B (0 ... 232-1)

13 ULINT unsigned long
integer

8B (0 ... 264-1)

14 REAL real 4B, IEEE-754 format
15 LREAL long real 8B, IEEE-754 format
16 TIME duration 4B (-T#24d20h31m23s648ms...

T#0s...#24d20h31m23s647ms)
17 DATE date 4B (0001-01-01 ... 9999-12-31)
18 TIME_OF_DAY time of day 4B (00:00:00.00... 23:59:59.99)
19 DATE_AND_TIME date and time 8B (connection of DATE and

TIME_OF_DAY types)
20 STRING character string variable length

 52

STRING, USINT, UINT, UDINT and ULINT types are not
implemented in CPDev yet..

Universal types

Groups of elementary types collected according to applications are called universal.

ANY

ANY_BIT ANY_NUM ANY_DATE TIME,

BOOL ANY_INT ANY_REAL DATE

BYTE INT UINT REAL TIME_OF_DAY

WORD SINT USINT LREAL DATE_AND_TIME

STRING
and
derived
types

DWORD DINT UDINT

LWORD LINT ULINT

Constants (literals)

Examples of constants of the types used most often are given below:
BOOL: TRUE, BOOL#1
INT: 13, INT#-1
REAL: 4.1415, REAL#18, 1.2E-6
TIME: T#1m3s250ms
TIME_OF_DAY: TOD#06:00:00

Single numerical constant without the dot is of type INT, whereas constant
with the dot is of type REAL.

Other types than INT, REAL are chosen by putting type name and sign # before the
number, e.g. DINT#-13, REAL#1.

Nondecimal numbers

Format of nondecimal number involves: 1) base of numerical system, e.g. 2, 8, 16,
etc., 2) sign #, 3) alphanumeric string as value. For instance, 2#11111111, 8#377,
16#FF denote 255 decimal. WORD#16#00FF is another option (leading zeroes are
not necessary).

Initial values

Default initial values are in the table:

Data type Initial value

ANY_BIT, ANY_INT 0
ANY_REAL 0.0
TIME T#0s
DATE D#0001-01-01
TIME_OF_DAY TOD#00:00:00

 53

DAY_AND_TIME DT#0001-01-01-00:00:00
STRING '' (empty)

Other initial values are declared by means of assignment sign :=, for instance

lamp: BOOL := TRUE;

Attributes

CPDev package supports two attributes of variables:

RETAIN CONSTANT

RETAIN declares a retentive variable whose value is kept in memory during power
brake (for warm restart). CONSTANT variable cannot be changed. Initial value of
retentive variable applies for cold start only, whereas initial value of non–retentive
one is also used for warm restart.

Declarations of variables

IEC standard defines a few kinds of variable declarations:
VAR VAR_IN_OUT VAR_ACCESS
VAR_INPUT VAR_EXTERNAL
VAR_OUTPUT VAR_GLOBAL

VAR declares local variables and function block instances. VAR_INPUT,
VAR_OUTPUT and VAR_IN_OUT are used in function blocks and functions.
VAR_EXTERNAL declares usage of variables defined in Global variable list (or,
equivalently, by VAR_GLOBAL; see For advanced users). END_VAR terminates
each kind of declaration.

Declarations VAR_EXTERNAL are allowed in programs only (not in function blocks
or functions). RETAIN attribute may appear in Global variable list (or VAR_GLOBAL),
in VAR and VAR_OUTPUT. VAR_ACCESS is not supported by CPDev.

Allocation of global variables

Allocation of single variable is determined by AT keyword followed by concatenation
of the sign %, size prefix and logical address, e.g.:

pump AT %B0009 : BOOL;

Global variable list involves Address option instead of AT. Size prefixes are shown in
the table.

Prefix Data types Size

B, X, none BOOL, BYTE, SINT, USINT 1B

W WORD, INT, UINT 2B

D DWORD, DINT, UDINT, REAL,
TIME, DATE, TIME_OF_DAY

4B

L LWORD, LINT, ULINT, LREAL,
DATE_AND_TIME

8B

 54

Prefixes B, X and leading zeroes of the address may be dropped (as %9 for the pump
above). Group declaration

 A, B, C AT %W0000:INT;

is equivalent to three individual declarations

 A AT %W0000:INT; B AT %W0001:INT; C AT %W0002: INT;

The keyword AT cannot be used for local variables which are located automatically.

Memory addresses

Compiler determines number of bytes from size prefix and assigns memory for the
variable beginning from the byte with address

 byte address := logical address * size,

(logical address from Global variable list or AT declaration). For instance, declaration

 counter AT %W0007: INT;

means that counter occupies 2·7=14th byte (and 15th). So the addresses of first
bytes where variables are located have the following properties

Prefix Byte address

B, X, none number after prefix

W even number (address)

D number divisible by 4

L number divisible by 8

Remark. Addresses of variables are needed to configure communication with
host computer. They are shown in Project report.

If global variable is declared without selecting Address option in Global variable list
(or without AT) the compiler locates it automatically filling empty spaces. Text auto
appears in the list.

If variables are declared in groups, some of the addresses may overlap since the
compiler checks whether address for first variable is free, and not the area for the
whole group. Warning appears in case of overlapping.

Function block declaration

As mentioned before, instances of function blocks are declared locally within VAR ...
END_VAR. For instance, if DELAY is going to be an instance of the TON block, it
must be declared by:

DELAY : TON;

 55

Programming in ST

Programs, function blocks and functions

The following keywords begin and terminate declarations of POU units:

POU Limiting keywords

Program PROGRAM ... END_PROGRAM

Function block FUNCTION_BLOCK ...
END_FUNCTION_BLOCK

Function FUNCTION ... END_FUNCTION

A program may call (invoke) function blocks and functions; function block may call
other blocks or functions. Recursive calls are not allowed.

ST language statements

They involve assignment, selections, loops, exits, function and function block calls
(invocations).

• A s s i g n m e n t : variable := expression;
Statements is terminated by semicolon ;.

• S e l e c t i o n s : IF, CASE

IF
IF A>B THEN
B := A;
ELSIF A<B THEN
A := B;
ELSE A := 0; B:= 0;
END_IF

Semicolons are not necessary after END_IF,
END_VAR and other ENDs.

CASE
CASE A OF
1: B:=1; A:=2;
2..10: A:=A+1;
 B:=A*1000;
11,13,15..21: A:=A+2;
 B:=A*10;
ELSE A:=1; B:=9999;
END_CASE

Selection variable must by of integer type
(ANY_INT, BYTE, WORD...). Entries are
constant values (or CONSTANT variables)
of selector type, otherwise Cannot match
primitive function... error appears (in line 0).

• L o o p s : FOR, WHILE, REPEAT

FOR WHILE REPEAT
counter := 0;
FOR i:=1 TO 10 DO
counter:= counter+i;
END_FOR

WHILE st1 OR st2
DO
pump := FALSE;
alarm := TRUE;
END_WHILE

REPEAT
B := B+1;
UNTIL B>10
END_REPEAT

 56

If control variable of FOR loop must be increased by other number than 1, then
BY… component is included into the statement, as in

FOR i:=1 TO 10 BY 2 DO ... END_FOR
FOR i:=10 TO 1 BY –1 DO ... END_FOR

(BY must be followed by a constant or CONSTANT variable).

• E x i t s : EXIT, RETURN
EXIT interrupts FOR, WHILE or REPEAT loop. RETURN provides early exit from a
function or function block (before END).

EXIT RETURN
WHILE i>0 DO
l := l+1;
IF l>MAX_l THEN
EXIT;
END_IF
i := i-1;
END_WHILE

FUNCTION LINE: REAL
VAR_INPUT
a,x,b: REAL;
END_VAR
LINE:=a*x+b;
RETURN;
END_FUNCTION

• F u n c t i o n
Standard and system functions (next chapter) are called directly. To call user–
defined functions corresponding libraries must be imported. Function call
statement may look as follows:

Y := LINE(A1,X1,B1);

• F u n c t i o n b l o c k
Suppose DELAY denotes instance of the standard timer TON. The following
statements invoke DELAY and transfer its outputs:

DELAY(IN:=_input, PT:=t#5s);
motor := DELAY.Q;
bargraph := DELAY.ET;

The outputs can also be transferred directly in the call statement by means of the
sign =>, i.e.:

DELAY(IN:=_input, PT:=t#5s, Q=>motor, ET=>bargraph) ;

Order of inputs and outputs does not matter in the call.

ST language operators

Expressions consist of operators and operands. The following table lists operators
with priorities in descending order.

Symbol Description Function

() parentheses –
F(x) function evaluation F(x)
** exponentiation EXPT
- arithmetic negation NEG

NOT Boolean negation NOT
* multiplication MUL
/ division DIV

 57

MOD modulo MOD
+ addition ADD
- subtraction SUB

<, >, <=, >= comparison LT,...,GE
= equality EQ

<> inequality NQ
AND, & Boolean multiplication AND

XOR exclusive OR XOR
OR Boolean sum OR

The operators separated above by the dashed lines have the same priority, so they
are executed in the order defined by expression (from left to right). Operators can be
replaced by functions given in the table, as in:

x1 AND x2 AND(x1,x2)

Single–dimensional arrays

Program part

VAR
 T:ARRAY[0..5] OF INT;
END_VAR

FOR I:=1 TO 5 DO
 T[I-1]:=T[I];
END_FOR
T[5]:=A; S:=0;
FOR I:=0 TO 5 DO
 S:=S+T[I];
END_FOR
S:=S/I;

Compiler accepts single–dimensional arrays
declared as local variables. The arrays
cannot be used as inputs or outputs.
Program on the left implements moving
average filter for variable A.

 58

FUNCTIONS

IEC standard defines large set of functions divided into groups. Most of IEC functions
are available in CPDev (several data types are not supported, e.g. STRING).

Mathematic and logic functions

Group Name Operation I/O types

ADD* add
SUB subtract
MUL* multiply
DIV divide
MOD modulo
EXPT exponentiation

ANY_NUM

Arithmetic

NEG negation SINT, INT, DINT
LINT, REAL

ABS absolute value
SQRT square root
LN natural logarithm
LOG logarithm base 10
EXP natural exponential
SIN sine
COS cosine
TAN tangent
ASIN arc sine
ACOS arc cosine

Numeric

ATAN arc tangent

REAL, LREAL

AND* logic product
OR* logic sum
XOR* exclusive OR

Boolean

NOT complement

ANY_BIT

SHL shift left, zero–filled
SHR shift right, zero–filled
ROL left–rotated, circular

Bit shift

ROR right–rotated, circular

BYTE, WORD
DWORD,
LWORD

GT greater
GE greater or equal
EQ equal
LT less
LE less or equal

Comparison

NE not equal

ANY

ADD add Time
SUB subtract

TIME

 59

Explanations

– Star * after function name indicates varying number of arguments (up to 15).
– Bit shift functions have two arguments, ANY_BIT (without BOOL) and INT.
– Other operations on TIME data can be executed by conversion to REAL or DINT.
– Additional function RANDOML (not listed above) returns REAL number in 0.0...1.0

for rectangular probability distribution.

Selection functions

All elementary types are allowed (ANY).

Name Operation Description

SEL (G, IN0, IN1)
OUT:=IN0 for G=FALSE
OUT:=IN1 for G=TRUE

SEL binary selector
 (one of two)

Types: G – BOOL; IN0, IN1 - ANY
MAX maximum MAX (IN1, IN2)
MIN minimum MIN (IN1, IN2)

LIMIT limiter LIMIT (MN, IN, MX)
OUT:=MIN (MAX (IN, MN), MX)
MUX (K, IN0, IN1, …)
OUT:=INi for K=i MUX* multiplexer
Types: K - INT, INO, IN1, … - ANY

MUX may switch up to 15 inputs.

Conversions

If the following table does not include a particular conversion, two steps are needed
with some intermediate type.

Input Function name

INT_TO_REAL INT_TO_DINT INT
INT_TO_BOOL INT_TO_WORD
REAL_TO_INT REAL_TO_TIME
REAL_TO_LREAL REAL
TRUNC ROUND
DINT_TO_REAL DINT_TO_TIME DINT
DINT_TO_DWORD DINT_TO_INT

TIME TIME_TO_DINT TIME_TO_REAL
BYTE BYTE_TO_SINT
WORD WORD_TO_INT
BOOL BOOL_TO_INT
SINT SINT_TO_BYTE

LREAL_TO_REAL LREAL
TRUNC ROUND

 60

LINT LINT_TO_LWORD
DWORD DWORD_TO_DINT
LWORD LWORD_TO_LINT

Remarks. Depending on argument type, TRUNC and ROUND convert either to
DINT or LINT. DEPR_INT_TO_DINT (not listed) converts INT to DINT by
repeating MSB bit.

Real time

CPDev package provides:
– system time as TIME data
– RTC clock read and write
– daytime and date components
– days of the week.
System time and RTC functions are given in the table. CUR_TIME increments
system time up to 24 days (a little more), then resets it to „negative” 24 days, and so
on. Time interval is determined as the difference between two CUR_TIME readings.

Name Function returns Result type

CUR_TIME current system time TIME

READ_RTC absolute time read from RTC clock DT

WRITE_RTC RTC clock update status BOOL

GET_TST absolute time of task start DT

TASK_CYCLE task cycle duration TIME

Explanations

– READ_RTC, WRITE_RTC and GET_TST functions operate on DATE_AND_TIME
data. WRITE_RTC returns status flag of RTC update operation (RTC functions
depend on hardware platform).

– Task start time returned by GET_TST is used more often than the time returned by
READ_RTC.

– TASK_CYCLE returns value set in the project (Task properties window).

Daytime and date components

Structure of DATE_AND_TIME data in shown below. Successive bytes denote: CC –
hundredth parts of a second, SS – second, NN – minute, HH – hour, DD – day, MM –
month, YY+YY – year.

 61

 DATE_AND_TIME

 CC SS NN HH DD MM YY YY

Byte
no.

0 1 2 3 4 5 6 7

 TIME_OF_DAY DATE

Functions from GET_HUNDSEC to GET_YEAR return INT value. Two types of
input arguments are supported.

Name Function returns Argument type

GET_HUNDSEC hundredths of second DT, TOD
GET_SECOND second DT, TOD
GET_MINUTE minute DT, TOD
GET_HOUR hour DT, TOD
GET_DAY day DT, D
GET_MONTH month DT, D
GET_YEAR year DT, D
GET_DAYOFWEEK day of week DT, D

Status word

Bits of status word returned by GET_STATUS_WORD1 denote:

Bit Mask Description

0 16#01 task cycle time exceeded in the last run
1 16#02 read array index out of range
2 16#04 cold start (0 means normal operation or warm restart)

 62

FUNCTION BLOCK LIBRARIES

CPDev package involves two libraries with function blocks, IEC_61131 and
Basic_blocks.

IEC_61131 library

Symbols of inputs and outputs are as in the IEC standard, so:
R – reset input (logic)
S – set input
CLK↑ – rising edge at CLK input
Q – output of BOOL type

Initial values of all inputs are zero.

Bistable elements

RS – RS flip-flop
Q1 = NOT R1 AND (Q1n-1 OR S)

SR – SR flip-flop
Q1 =S1 OR (NOT R AND Q1n-1)

SEMA – semaphore
BUSY = TRUE for CLAIM=TRUE
BUSY = FALSE for RELEASE=TRUE and CLAIM=FALSE

Edge detectors

R_TRIG – rising edge detector
Q = ↑↓ for CLK↑

F_TRIG – falling edge detector
Q = ↑↓ for CLK↓

CLK Q
F_TRIG

BOOL BOOL

CLK Q
R_TRIG

BOOL BOOL

CLAIM
RELEASE

BUSY

SEMA

BOOL
BOOL BOOL

S1
R

Q1
SR

BOOL
BOOL

BOOL

S

R1
Q1

RS
BOOL
BOOL

BOOL

 63

Counters

CTU – up counter
CV = CV+1 for CU↑, CV<PV and R=FALSE
CV = 0 for R=TRUE
Q = TRUE for CV=PV

CTD – down counter
CV = CV-1 for CD↑, CV>0 and LD=FALSE
CV = PV for LD=TRUE
Q = TRUE for CV=0

CTUD – up-down counter
CV = CV+1 for CU↑, CV<PV and R=LD=FALSE
CV = CV-1 for CD↑, CV>0 and R=LD=FALSE
CV = 0 for R=TRUE
CV = PV for LD=TRUE and R=FALSE
QU = TRUE for CV=PV
QD = TRUE for CV=0

Timers

TON – on-delay timing
IN

Q
PT

ET

TOF – off-delay timing
IN

Q
PT

ET

TP – pulse timing
IN

Q PT PT

ET

Remark. Recall that READ_RTC, WRITE_RTC and GET_TST functions handle
RTC clock in CPDev.

IN
PT

Q
TP

TIME
BOOL BOOL

ET TIME

IN
PT

Q
TOF

TIME
BOOL BOOL

ET TIME

IN
PT

Q
TON

TIME
BOOL BOOL

ET TIME

INT
BOOL
BOOL

BOOL
BOOL

BOOL
BOOL

INT

CU
CD

LD
R

PV

QU
QD
CV

CTUD

INT
BOOL
BOOL BOOL

INT
CD
LD
PV

Q
CV

CTD

INT
BOOL
BOOL BOOL

INT
CU
R
PV

Q
CV

CTU

 64

Basic_blocks library

Notation:
R – reset input for arithmetic and logic, or to set another value
S – selection or switching input, set input for flip–flops
IN↑ – rising edge at IN input; edge at t0 is denoted by t0:IN↑
Q – output of BOOL type
OUT – output of REAL,TIME or other type.

Initial values of all inputs are zero.

Mathematic blocks

DIVI – division with limited divisor
OUT = IN1/IN2
LM – limit of IN2 before 0
If |IN2|<LM, then OUT=IN1/(±LM); ± is IN2 sign.

SQR – square root with linear initial part
OUT = IN for IN ≥ LM

OUT = IN/ LM for IN < LM

Switches, selectors

ASWI – analog switch
OUT = IN1 for S = FALSE
OUT = IN2 for S = TRUE

BSWI – binary switch
Q = IN1 for S = FALSE
Q = IN2 for S = TRUE

AMEM – analog memory
OUT = IN for TRG = FALSE
OUT = IN(t0) for TRG = TRUE, t0: TRG↑

BMEM – binary memory
Q = IN for TRG = FALSE
Q = IN(t0) for TRG = TRUE, t0: TRG↑

IN
TRG

Q
BMEM

BOOL
BOOL BOOL

IN
TRG

OUT

AMEM

BOOL
REAL REAL

BOOL IN1

IN2

S

Q
BSWI

BOOL

BOOL

BOOL

BOOL
REAL
REAL REAL IN1

IN2
S

OUT
ASWI

IN
LM

OUT
SQR

REAL
REAL

REAL

IN1
IN2
LM

OUT
DIVI

REAL
REAL
REAL

REAL

 65

COMP – analog comparator with hysteresis
Q = FALSE for (IN1-IN2) < -H/2
Q = TRUE for (IN1-IN2) > H/2

Flip–flops, pulsers

DFF – D flip-flop
Q = D for CLK↑ and R = FALSE
Q = FALSE for R = TRUE
NQ = NOT Q

TFF – T flip-flop
Q = NOT Qn-1 for CLK↑ and R = FALSE
Q = FALSE for R = TRUE
NQ = NOT Q

JKFF – JK flip-flop
Q = f(J,K) for CLK↑
NQ = NOT Q

RSFF – RS flip-flop
As RS in IEC, but with additional NQ output (NOT Q).

SRFF – SR flip-flop
As SR in IEC, but with additional NQ output (NOT Q).

DELS – delay by one step (cycle)
Qn = INn-1

GENR – alarm generator
Q = ↑↓↑↓ for R = FALSE
Q = FALSE for R = TRUE
Frequency determined by IN1, IN2.

PDUR – pulse duration
OUT = 0 for IN↑ or R = TRUE
OUT = t for IN = TRUE and R = FALSE

IN
R

OUT
PDUR

BOOL
BOOL

TIME

IN1
IN2
R

Q
GENR

BOOL
BOOL
BOOL

BOOL

IN Q
DELS

BOOL BOOL

S1
R

Q
SRFF

BOOL
BOOL

BOOL
NQ BOOL

S

R1
Q

RSFF
BOOL
BOOL

BOOL
NQ BOOL

J
CLK
K

NQ
Q

JKFF
BOOL
BOOL
BOOL

BOOL
BOOL

T
CLK
R

NQ
Q

TFF
BOOL
BOOL
BOOL

BOOL
BOOL

D
CLK
R

Q
NQ

DFF
BOOL
BOOL
BOOL

BOOL
BOOL

IN1
IN2
H

Q
COMP

REAL
REAL
REAL

BOOL

J K Q
0 0 Qn-1
0 1 0
1 0 1

1 1 Q n-1

IN1 IN2 Cycles
0 0 1
0 1 2
1 0 4
1 1 8

 66

TOTI – totalizer

Q = ↑↓ (impulse) for ∆=∫
t

t
dIN

0

)(1 ττ

R – integral reset
DL – time interval ∆ for integration

Filters

FILT – lag filter

OUT =
1

1

+Ts
 IN for R = FALSE

OUT = IN for R = TRUE

DIFR – lead filter (differentiation)

OUT =
1+Ts

Ts
 IN for R = FALSE

OUT = IN for R = TRUE

Others

DEBA – dead-band
OUT = 0 for |IN| < DB
OUT = IN ± DB for |IN| ≥ DB (- for IN>0, + for IN<0)
OUT = IN for DB < 0

LIMT – limiter
OUT = IN for MN<IN<MX
OUT = MN for IN<MN
OUT = MX for IN>MX

RAND – random
OUT = random
S = FALSE – normal distribution N(IN1, IN2)
 IN1 – average value
 IN2 – standard deviation
S = TRUE – rectangular distribution <IN1, IN2>
 IN1 – low limit
 IN2 – upper limit

Remark. ASWI, BSWI and LIMT blocks can be replaced by SEL and LIMIT
functions (see earlier). SEL automatically recognizes type of inputs.

IN
MN
MX

OUT
LIMT

REAL
REAL
REAL

REAL

S

IN1
IN2

OUT
RAND

BOOL
REAL
REAL

REAL

IN
DB

OUT
DEBA

REAL
REAL

REAL

IN
T
R

OUT
DIFR

REAL
TIME
BOOL

REAL

IN
T
R

OUT
FILT

REAL
TIME
BOOL

REAL

IN
R
DL

Q
TOTI

REAL
BOOL
REAL

BOOL

 67

System blocks

They are ”always available”, so no library is needed.

• Alarms
R – reset input
Q – alarm output

Alarm condition is indicated by TRUE at the output Q. Setting R to TRUE cancels
the alarm.

Alarms blocks

Warm restart (after power brake)

Cold start (memory cleared, initial values)

Cold start is also initiated when memory test detects data error. Global variables
are then set to initial values.

Example

Declarations
VAR
STATE:APON; RESET:BOOL; ALARM:BOOL;
END_VAR;

Usage
RESET:=FALSE; STATE(R:=RESET); ALARM:=STATE.Q;

R Q
ASTR

BOOL BOOL

R Q
APON

BOOL BOOL

 68

SUPPLEMENTS

Correcting variable list

Suppose the Global variable list looks initially as follows:

• Incorrect address

New group of two variables, MOTOR and PUMP, is declared, the first one with
wrong address 0002. Clicking Add supplements the list with the two variables,
however the line MOTOR is shown in red indicating address collision.

As in the START_STOP project, MOTOR and PUMP should be located at 0008,
0009.

• Group selection
Select the lines to be corrected, the second one with Shift or Ctrl. Names of
variables, types and addresses appear in the upper cells (cell Type would be
empty for different types).

• Corrections
Selection of Address option automatically displays first free address for the
colliding MOTOR, so 0004 here.

If you pressed Replace now, PUMP would remain at 0003 and MOTOR placed at
0004. However, we want 0008 instead of 0004.

 69

Pressing Replace corrects the variable list accordingly.

Note that five bytes from 0003 to 0007 remain empty.

Filling empty areas

Suppose we need another REAL variable called ANALOG. Enter name and type,
select Address option. First free address D0001 is then indicated.

Since ANALOG occupies four bytes (REAL), so the address of its first byte is
0001*4=0004. Pressing Add displays the following list

Former empty area is almost full now.

Marks

Small rectangles with digits indicating portions of large programs, to improve clarity
and navigation, are called marks (or bookmarks). Portion of a code with two marks is
shown below.

The following shortcuts handle marks:

• Shift + Ctrl + 0,...,9 – create a mark 0,...,9 at the line indicated by the cursor
• Ctrl + 0,...,9 – place cursor at the line with mark 0,...,9

 70

Key shortcuts

Shortcuts Operation Shortcuts Operation

Ctrl+Up Scroll line up Shift+Ctrl+I Block indent
Ctrl+Down Scroll line down Shift+Ctrl+U Block unindent
Ctrl+PgUp Scroll screen up Ctrl+M Break line
Ctrl+PgDown Scroll screen down Ctrl+H Insert line
Ctrl+Home Editor top Ctrl+T Delete word
Ctrl+End Editor end Ctrl+G Delete line
Ins Toggle insert/enter

mode
 Shift+Ctrl+Y Delete till end of line

Ctrl+Ins Copy selected part Ctrl+0,...,9 Go to mark 0,...,9
Shift+Del Delete selected part Shift+Ctrl+0,...,9 Set mark 0,...,9
Shift+Ins Paste from clipboard Shift+Ctrl+N Select by lines
Ctrl+Bksp Remove last word Shift+Ctrl+C Select by columns
Alt+Bksp Undo Shift+Ctrl+L Select full lines
Shift+Alt+Bksp Redo Shift+Ctrl+B Match brackets

Errors, warnings, hints

Message list

Bottom area of interface window may show the following messages:

Icon Meaning Icon Meaning

 Error
 Information

 Warning
 Question

 Hint (none) Nonrecognized text

Icons from left table are used by the compiler. An error interrupts compilation,
warning indicates possibility of erroneous code (or another reason, e.g. outdated
library). A hint may point out that global variable is hidden by local one with the same
name.

Message format:

 [icon] filename.cst@code_line message text

Context menu clears message list or removes some of its components.

Right table is reserved for future use in languages supported by .NET (e.g. C#).

Code line

A .cst file indicated in a message involves program code in ST language created by
Project > Build. Double clicking the message opens POU editor with cursor at
erroneous line. Sometimes however, the error may be somewhere else. If the

 71

compiler is unable to find erroneous line, it indicates the line with number 0 or -1 (for
instance, when task is not declared).

Omitting erroneous objects

The compiler operates similarly to a stack. So an error in a component of IF
instruction in a function block generates three messages: 1) error in the component,
2) error in IF, 3) error in function block. In addition, if the option Omit erroneous POU
objects during compilation has been selected, fourth message warns that the next
object is being compiled without completing the previous one. In this next object,
even for correct code, an error may be detected due to omitting the earlier code.

Autocomplete

Compilation of the project is a condition to display autocomplete list. It is convenient
to compile the project after declaration of POUs to include datatype names, standard
functions, etc. into the list. Second compilation should follow declaration of variables
(clear message list before).

Library update

While opening an old project a warning may appear with information that library
version of the project is different than the one being now used by CPDev. The library
reference will be automatically updated if, while closing the project, you answer Yes
to the question Save changes in the project ...

Compiler directives

Directives are optional commands for the compiler to simplify coding, determine
access to variables, save comments, etc. Format is the same as for standard
comments except additional sign $ after initial (*. Four most useful directives are
described below.

Directive Meaning

(*$AUTO*)
Declaration VAR_EXTERNAL (*$AUTO*) END_VAR automatically
inserts declarations from Global variable list into the program.

(*$READ*)
Variable declared in a program, as e.g. START: BOOL
(*$READ*), is considered read only in this program. Other
programs may write into it, however.

(*$WRITE*)
Variable declared in a program, as e.g. PUMP: BOOL
(*$WRITE*), is considered write only in this program. Other
programs may read it, however.

(*$VMASM*) Part of a program written in Virtual Machine language.

Other directives govern internal operations of the compiler. Directives are highlighted
by the editor.

 72

Simulation session

All data for simulation, i.e. variable list, individual windows and control panels, can be
saved in a file to repeat simulation session in future.

• File > Save session or click
 Save as window involves default filename with .scp extension.

• Resuming the session

 File > Open session or click

Session may be also resumed while opening .dcp file (provided that .scp is in the
same folder). Answer Yes to the question Do you want to open saved session as
well? One of CPSim Program options enables automatic resuming.

Save results

Simulation results may be saved in an .out file by selecting Trace > Log output data.
Filename is determined in Program options (Output file tab with and Path).
Symbol in the status bar indicates logging. The .out file is a text file with variable
values written in successive cycles. Variables from individual windows are logged
only. Logging may be stopped by clicking the variable window with right button.

A part of Start_Stop.out file is shown below. START is set in 2nd and STOP in 11th
second.

Time START STOP ALARM MOTOR PUMP
200 0 0 0 0 0
400 0 0 0 0 0
...
2000 1 0 0 1 0
...
11000 1 1 0 0 1
...
16600 1 1 0 0 0

Time is given in milliseconds (200 ms task cycle). Columns are separated by Tab.
The file can be processed by MS Excel.

Simulation controlled automatically

By selecting Trace > Read input data the simulator automatically sets values of
variables from .inp file indicated in Program options (Output file tab). It is a text file
(prepared earlier) of the same format as .out. Negative time terminates simulation.

Time START STOP ALARM
0 1 0 0
10000 0 1 0

 73

12000 0 1 0
20000 1 0 0
30000 1 0 1
35000 1 0 0
-40000

CPDev files

Programs and libraries of CPDev package exchange data through files with
extensions given in the table. Name of .xml basic file is default name for the others.

Extension Content

.xml Basic file of the project

.cst Program code in ST language (text file)

.hcp Project header created during compilation

.dcp Intermediate file for simulator and configurer created during
compilation

.xcp Binary code of compiled program for virtual machine VM
(runtime)

.lcp Semi–compiled library

.scp Simulation session

.inp Input data for session executed automatically (text file)

.out Session results (text file), e.g. for MS Excel

.xmc Communication parameters (for SMC controller)

.html Project report

.htm Communication report (for SMC: parameters, task table)

The .cst and .xcp files are created automatically during compilation. Recall that at the
beginning it is convenient to create project folder for all files.

 74

SOURCE CODES OF STANDARD BLOCKS

Implementations of IEC 61131–3 standard blocks are presented below, one for each
of four groups. They may be of some help while learning ST programming using
CPDev.

• SR flip–flop
FUNCTION_BLOCK SR
VAR_INPUT
 S1: BOOL; (* set input *)
 R: BOOL; (* reset input *)
END_VAR
VAR_OUTPUT
 Q1: BOOL; (* output *)
END_VAR
Q1 :=S1 OR (NOT R AND Q1);
END_FUNCTION_BLOCK

• R_TRIG rising edge detector
FUNCTION_BLOCK R_TRIG
VAR_INPUT
 CLK : BOOL; (* input *)
END_VAR
VAR_OUTPUT
 Q : BOOL; (* output *)
END_VAR
VAR
 CLKp : BOOL := FALSE; (* previous value of CLK input *)
END_VAR
Q := CLK AND NOT CLKp;
CLKp := CLK;
END_FUNCTION_BLOCK

• CTU up–counter
FUNCTION_BLOCK CTU
VAR_INPUT
 CU : BOOL; (* up–count input *)
 R : BOOL; (* counter reset *)
 PV : INT; (* preset value – upper limit *)
END_VAR
VAR_OUTPUT
 Q : BOOL; (* output set when limit reached *)
 CV : INT; (* current value *)
END_VAR
VAR
 CUp : BOOL := FALSE; (* previous value of CU input *)
END_VAR
IF R THEN (* if R = TRUE *)
 CV := 0;
ELSE
 IF (CU AND NOT CUp) THEN (* if rising edge at CU input *)
 IF (CV < PV) THEN
 CV := CV + 1; (* increment *)
 END_IF
 END_IF
END_IF
Q := CV >= PV; (* if CV >= PV, then Q := TRUE *)

 75

CUp := CU; (* save CU as previous *)
END_FUNCTION_BLOCK

• TP pulse timer (pulse of preset duration)
FUNCTION_BLOCK TP
VAR
 stime: TIME; (* start time *)
END_VAR
VAR_INPUT
 IN: BOOL; (* input *)
 PT: TIME; (* preset time *)
END_VAR
VAR_OUTPUT
 Q: BOOL; (* output *)
 ET: TIME; (* elapsed time *)
END_VAR
IF NOT Q THEN (* state 0 or 2: *)
 IF IN THEN (* if rising edge at IN or waiting for IN=0 *)
 IF ET = t#0s THEN (*if rising edge at I N *)
 IF PT > t#0s THEN (* state 1: pulse time co unt *)
 stime := CUR_TIME(); (* save star t time *)
 Q := TRUE; (* set the output Q *)
 END_IF
 ELSE (* state 2: wait for IN=0 *)
 Q := FALSE; (* reset Q *)
 END_IF
 ELSE (* state 0: wait for rising edge at IN *)
 ET := t#0s; (* reset elapsed time *)
 END_IF
ELSE (* state 1: pulse time coun t *)
 ET := CUR_TIME() - stime; (* elapsed time updat e *)
 IF ET >= PT THEN (* if preset value re ached *)
 Q := FALSE; (* reset Q *)
 ET := PT; (* elapsed := preset *)
 END_IF
END_IF
END_FUNCTION_BLOCK

