CONTROL
PROGAM
DEVELOPER

=glejisiz=ririe) tools
feJeelgelelezinpirriiric) in |IEC B1:

Instruction Manua

© Department of | Engineering
Rzeszow Univ 07 -2014

CPDev
PROGRAMMING INSTRUCTION

CONTENTS

CPDeV INSLAlIAtION ..ottt 1
Startup. MENU. TOOIS ettt e e e e e e e e 3
5] £= L (U] o P PP PT PP PPPPPPPPPP 3
=T o U I= 1o To i (o]o] | o F- | SR O O ST PP PP PP PPN 3
ENVIFONMENT OPLIONS ..ottt ettt ettt b et e st e e e st e e e s aanr e e e s aanneees 6
GIODAI SEIINGS ...eeeeeiit ettt e st e e e bt e e et e e e s e e e b e e 8
New projeCt — START_STOP ...t e e e eeeenees 10
START_STORP SYSIEM ..ttt ittt ettt ettt e e e e e e e e e e e e e e e e e e 10
(O LI T o] (o] =T o PR UU RO UPPRPRR 11
NEW FIl ettt ettt e e h bt e e a bbbt e e e h bt e e e n bt e e e e e nees 11
o] [=Tor A g = 1o [PPSR 11
GIODAI VAIADIES ..ot 13
P OgIAIM . 16
LI PO PSP PP PP PR PPPIN 18
Save Project iN XML filE ..ottt e e e e e e e e e e e e e e e e e anns 19
(@] 41071 F=Y i o o [PPSO PPRPRR 19
Save and ClOSE the PrOJECT ...t e e e et e e e e e e e ber e e e e e e e e anns 21
LIDrary tIMEIS et e e e e e e et e e e e e e eeeanee 22
Delayed SWILCNINGS ...eeeiiiieiiii ittt e et e e e e e e e e e bbb e e e e e e e e e e aanbeeeeeaaeeaannnneees 22
(@] o1 g =) IS 1l g o [o] £ =T o) AP EEP PRI 22
IEC_61131 standard lIDrary ...t 23
Extension of START_STOP PrOJECT ...ttt e e e e e e e e e e 24
Individual declaration of global variable ... 26
(e o] [=Tor A =T o] o AP PRRPR 27
Project SIMUlation ... eeanee 29
RUN CPSIM SIMUIALOT ...ttt e e e st e e e e e e e nbe e e e e e 29
SIMUIBLOT WINGOW ...ttt ettt e e ekt e e ekt e e e st bt e e e anbr e e e e anbeeeeennes 30
CPSIM MEBNU ..ttt ettt e bt e e e e bt e e e e a b et e e e ek b et e e e b b e e e e aabb e e e e anbeeeeeanbeeeeanees 31
L0 1] o= LSOO PSP P P PPTPTPPPIN 31
Start, STOP @NG PAUSEeeeiiiieiiiiieiie ettt e e e e ettt e e e e e e e et e beeeeaaeaeaannabeeeaeaeeeanbnrneeeaaaaeaann 31
VAITADIE TIST ...ttt e et e et e s e n e s 32
Variable views (individual WINAOWS)cooiiiiiiiiiiiee et e e 33
(1010 oI o= 1= PP UTT SO UPPPPRR 34
(o To =0 4 o] o] 1[o] o 1S P TS PRRPR 35
RTC ClOCK s 37
Problem de@SCHIPLIONooi et e e e e s et e e e e e e e e e e aanb e e e e e e e e s e neneees 37
g IO o (0] = o P SPRRPR 38
0010 =1 (T o P PO PPP TP PP TP PPPON 39
User—defined [IDrary ... 41
[o] = U VA= Lo W o] (=T ot PRSPPI 41
FB_AVERAGE ...ttt ettt ettt b et et e e bt e e bt e e s a b e e e s bt e e be e et be e ebe e e nreeenes 42
FB_PULSE ..ottt ettt ettt ettt etttk h e e e a e e e ket oo a bt e ekt e e bt e oo ek be e sabe e enbe e e nbee e ebeeenreeenee 43
[o] = U VA=) d o To] APPSO PRRPR TP 45
B 12211 Lo PP PRI 48
[o] = L VA =3 (=] 1 5] o PRSP PTRPR 49
ST [aNQUAGE OVEIVIEW ...eeiiiii ittt e et e e e e e e e e e eeaeaa s 50
IEC 61131—3 STANUANToeiiiiiiiieiiiiii ettt e e e st e e e e e e nb e e e e nees 50
Data types and VariabIESooiiiiiiii e a e 51

Programming iN ST ...ttt e e e e e e e e e e e e e e s e s bbb e e e e e e e e e s e e aanbreeeaaeeeaaannnreees 55

I N | (oo] o F RO 58

Mathematic and 10giC fUNCLIONScooiiiiiiiiii e e e e e e e e 58
Y=Y 1= Tox 110 SR 0T T o) USSR 59
(@] 01V =T] T o 1S SRS 59
== LN 113 1= SRR 60
Daytime and date COMPONENTSciiieiiiiiiiiiii e e e e e e e e e e e s s e e e e e s s et ereaeesssssnnraareeeeesennnnrenes 60
3 =10 3010 o USRS 61
o Function bloCK lIBraries ... 62
| L@ 31 I 31 1 o > oSSR 62
2 F T (o o] (o Tt T 1 o = oSSR 64
Y] (=T 1] [0 Lo 4 SRR SRRRR 67
LS T U o] o1 [T 4 1T o1 £ SRR 68
Correcting Variable liStcooci i a e 68
(T aTo =T] o) Y= L (ST LSRR 69
Y= 1 SRR 69
(S Y 10 (o U £ SRR 70
Errors, Warnings, NINSooiiiiiiiiec e s s e e e e e s s e e e e e e s e s sanb e e e e e e e e s enrnreees 70
(@] 4] o1 L= o [T d=To3 1)Y= USSR 71
S W] F= LT g JRST =TS T o ISR SERRR 72
(@ I TV 1= PSSR EERRR 73
» Source codes of standard bIocks ..o 74
September 2009

Rzeszow University of Technology, Poland
CPDev development has been supported by MNiSW R02 058 03 grant.

CPDev INSTALLATION

Operating system

Windows (32 bit / 64 bit) 8/7/Vista/XP/2000/98 SE

Microsoft prerequisites

Microsoft .NET Framework 2.0
Microsoft Visual C++ 2005 (SP1) Redistributable

Remark. SP1 is not available in Windows 98; CPDev functionality restricted a
little.
Installation program

cpdev-company-1.0.1.13.exe, possibly with updated number.

nnnnn

’ P=1 _PDev Setup
I,- * KIA PRz

Language selection

Select Setup Language ﬂ

0k, I Cancel

The language applies for the setup and application folders. Interface language is
initially chosen according to the following table. It can be changed in Global settings
(Tools menu).

Installation Interface

English English
Polish Polish

Dutch English

Installation steps

Typical for Windows programs.

Installation options

—iFi%

Completing the CPDev Setup
Wizard

Setup has finished instaling CPDev on your computer. The
application may be launched by selecting the installed icons.

Click Finish to exit Setup.

¥ FReset configuration fram previous version

¥ Launch CPDev

< Back I Finizh I

Reset configuration ... restores default configuration (Environment options in Tools).
Reset is necessary if the following items have been changed:

1) Installation language (directory names changed)

2) Recipient group (Praxis, Lumel, Univ)

Remark. Screen windows presented here correspond to 96 dpi (normal font).
They may be slightly different for other sizes.

Uninstall

Available from Start menu.
|I ﬁ Uninskall CPDey

Uninstallation does not remove user configuration files from Local/ApplicationData
folder (see ev. CSIDL Values in Microsoft documentation).

STARTUP. MENU. TOOLS

Startup

CPDev starts automatically if Launch CPDev is selected during installation. Start
menu or desktop icon trigger standard startups.

b CPSim L=
ﬁl Uninstall CPDew ﬂ#
£ cpcon CPDev

Remark. Nonstandard startups with additional parameters can be executed
from directory in which CPDev is installed. Otherwise error of loading external

modules appears.

The startup displays CPDev interface window whose left part will present project tree,
middle one program code, and bottom part compiler messages.

DD
File Edit Wiew Project Tools window — Help

O E RS S E G PR ER

poU | Resources || T_l,lpes|

Menu and toolbar

Fle Edit Wiew Project Tools Window Help
NEEERISI] 2 Brarm
New 5] open Ml sae 1Sl pin
Print preview Help Find text
l Build Start simulator Start configurer

Manu and toolbar functionality is typical for Windows programs.

File Edit
File | Edit Wiew Project
1] Mew Cerl+H
15 oOpen k40
Edit | Wiew Project Tools
¥} Undo Ckrl+Z
/ & Redo Chrly
& Cut Chrl+2
Recent files 3 23 Copy ChrlaeC
, |, Paste Chrl+y
Select all Chrl+A
4 Find Chl+F
Exik alk+F4 Find | Replace

Some of the items remain inactive until a project is open. Print prints project report
and source codes (print preview has not been implemented yet.) Copy and Paste,
besides standard text operations, handle items from project tree (POU units, global
variables, etc.). Find looks for text written in the toolbar cell.

View

Yigw | Project Tools Window — Help

Toolbar
- Status Bar

Switch Focus] Project tree Alt+0

Current edit window alk+1

Message lisk alk+2

Press Alt+0 to get quickly to project tree, Alt+1 to program window, and Alt+2 to
message list.

Project

The option handles final stages of the project. Build compiles open project or its
element. Clear removes intermediate files created automatically during compilation,
leaving only two necessary (.xml, .xmc; see Supplements). Simulator and hardware
configurer can be run after compilation. Item adds, removes, etc. project elements.

Project | Tools window Help
] =N Build F& L' E b by
] Rebuild al
lean
Piell Fun simulator
Pl Run configurer
| Item 3 add
Export b Remaove
Irnport b Rename
Tools k Edit keI
Make copy Properties
] Cptions Unlack, Chr+E
CH
bpes | _I Lock Crl+D

Export, Import deal with libraries (.Icp) or external files with ST programs (.cst). Tools
edit list of global variables, present compilation report, and open project folder in
Windows explorer.

| Export r | Library
Imnpork » Texk file

| Import g | Library |
Toals k Text file
Make copey PLCopen File Format
Tools » Global variables
Make copy Report Alt+R
Options Cpen project Folder

Contents of the last three options look as follows:

Tools Window Help
Tools | window Help Window | Help Help
] Enviranment options Cascade Programming instrockion
1 Global settings Tile vertical @) Information materials Ctrl+Fl
Compiler Tile horizontal @ P [rsfess
Simulatar Close all Check update
Corfigurer Arrange icons about program. ..

Tools configure environment, determine global settings, and run compiler, simulator
and configurer standalone for working with external files (.cst, .dcp, .dcp or .xmc).
Window arranges interface. Help accesses programming instruction, information
materials with function, function blocks, and notes For advanced users. It also
indicates whether CPDev has been updated.

Help dispatcher - Index E”E”Z|

Select a book

Programming maral
Implemented functions
Standard libranes

For advanced uzers

Environment options

Configuration window with a few tabs is displayed.

]

Configuration

Projects |Editing Colors | Miscellaneous | Compiler

General zettings
Default Vitual Machine specification file

| C:\Pragram Files\CPD eviWMAWM-SMC. sl | (]
Olptimization level: |Jze zingle tagk optimization of global variablex

Default libraries

C:MProgram Files\CPDesLibrarieshEC 61731-3cp .
Import selected
libraries to new
projects:

Projects

Path to a file with Virtual Machine specification (runtime) is provided. Use... option
must remain selected (default) for single task VM. Optimization level 1 is normal (ev.
see For advanced users).

The tab also indicates which libraries should be automatically imported into new
projects. Button adds library from Libraries folder. E] removes selected library.

Editing
Single and Double colorable modes show keywords in different colors. Single
(default) provides additional autocomplete help to finish names of variables, functions,

etc. (Supplements). Auto synchronization... unifies names of the same elements in
different parts of the project.

Configuration

Pmiects| Editing |COIors Miscellaneous | Compiler

ST language editor

Editor default mods

Simple single

Single calorable

Simple double

Double colorable

Fill news items of the project with default templates
Auto synchronization of item names
Automatically unlock, window for editing

Synchronize item names after editing

Colors

Scheme of editor colors, text attributes, etc., together with example of colored code,

is shown below.

Projects Editingl Colors |Miscellaneous Caompiler
Editor items
Buldintype w | - Text athibutes 00l FUHCTION MyFun : IHT:#
BDT”??"‘ [Bald Pl | S COMMENT My simple
elimiter
Directive [T Italic 003 VAR THPUT ¥ : REAL;
i *
|dentifies [Undetine ood4 IF ¥ THEW [#SWIMASHM MC
Canstant = 005 MyFun := MyFun + DINT
E:;tg[cdha[ade' Force default parameters o0 ¥ := ¥ XOR BOOL#1:
Operatar ~|| [Fort [] Background 007 ...
008 EHD FUHCTIOH
Font calar o —
v Ciefault M
| | Dlodak ClNore |0 VAR GLOBAL _
Backaround color 011 vwvog AT 20001 : BOOL: 2
| v| [] Defauk] Mone ail - "T T S

Miscellaneous

Size of Recent files list is determined. Bold characters distinguish active project for
selected POU. Ask, or not, before opening the stored report in default browser.
Replace Virtual Machine specification file by default (from Projects tab). For a global
variable, the project tree may show type, three addresses and comment.

Configuration

Projectz | Editing Colors| Mizcellansous |C0mpilet

X

General

Mumber of recently opened files 16 &
[] Clear the list of recently opened files

Distinguizh active project name for POL

Azl before opening the stored report

“Wariable type
[1 %M physical address

Show in the tree:

Replace project Wi zpecification file with default WM specification file
Physical address Logical address

Cormment

Cancel

Compiler

Align addresses avoids overlapping of variables. C++ and nested comments may be
accepted. Configuration of visualization package, e.g. InTouch, requires Modbus
addresses (for SMC controller).

Projects | Editing | Colors | Miscellaneous | Compiler
Compiler options

Align addresses of global vanables to multiply of their sizes
Align addrezses of local variables to rmultiply of their sizes
Append information data for Fenisile debuaager
lgnore bad POUs during compilation
[] Single-line comments A4 [from C++) permitted in 5T code [not in 1EC 51131-3)
Mested comments permitted in ST code
Additional colurnz in compilation report
Show Maodbus addreszes in SMC
[Show InT ouch addresses for SMC

Global settings

They affect three CPDev programs, i.e. compiler, simulator and configurer. Selection
of Global settings (in Tools) opens CPDev package configuration window with three
tabs.

Communications

PC port for communication with the controller is configured according to
Communication settings. If the controller is connected via USB, Windows Device
manager determines port number. SMC controller settings define controller number
for PC and parameters for communication with distributed I/O modules or other field
devices. The 8N1 mode denotes 8 data bits, odd parity (N) and 1 stop bit.

CPDey package configuration g|

Communications | User interface | Update

Cammunication settings

Cormniunication port. | COM1 w Baud rate:
D ata bits: 8 ~ Stop bits: 1 w
Parity: MHonhe Ev Flow contral: MNone v

SHC contraller settings

~
-

SMC controller rurmber: 1

SMC - 1/0 modules communication settings

SMC- 140 baud rate: SMLC - 10 mode aM1 w

User interface
Interface language of CPDev package is chosen.

CPDewv package configuration

Communications | User interface | Update

X

Application language Application variables
Curment language code: l:l Mame Walue
AppDir C:\Program Files\CFDew
Avvailable language: H_IpD_il C:\Program F?Ies\EF’Dev\F’_on_'noc)
_ _ __ LibDir C:%Program Filesh\CPDev Biblioteki
E nalish. Englizh (020409 ExarnplesDir C:\Program Files\CPDewv'Prayklady
Palish, Palski CuztomTe... C:\Prograrm Filez\CPDev\Szablany
TechDocDir C:\Program Files\CPDev\Doc
WA < Doir C:%Program Filesh\CPDew\ Wi
Mew value
Select Accept

Update

The tab determines configuration to check whether new version of CPDev has
appeared on the update server.

Comrmurications || User interface| Ipdate |

Update server: | http:/ Az prz-rzeszow. plf cpdevdcpd_wer.php |

Ipdate server user: | public |

xxxxx
|Update server pazsword: | |

[] Use prowy for intemet connection

Praosy zettings

Prosy server address: | |

P[DK_I,I LIZEN Name: | |

Prosy user pazsword: | |

Remark. Passwords of the update and proxy users are not encoded, so should
be erased after checking the update.

NEW PROJECT — START_STOP

START_STOP system

The objective is to turn a motor on and off. Sample control diagrams are shown
below.

Functions block diagram

OR
START
— AND MOTOR
STOP |
ALARM]
Ladder diagram
START STOP ALARM MOTOR
[N N [\
| | 1/l 1/l ()

MOTOR

START, STOP and ALARM inputs are acquired by the controller from binary input
module. MOTOR output is sent from the controller to binary output module. The
following addresses are assigned to variables.

START 0000 MOTOR 0008
STOP 0001
ALARM 0002

The adjacent three addresses indicate that START, STOP and ALARM will be read
in one command or message. All signals correspond directly to hardware, so they will
be declared as global variables.

Remark. The START_STOP system can also be implemented by means of RS
flip—flop, with START connected to S input and STOP plus ALARM to R.

10

Create a project

First open a new folder, e.g. START_STOP, for all files of the project. Steps
executed by CPDev are then as follows:

Create a new file

Give name to the project

Declare global variables

Enter the program

Declare task

Compile the program

Save the source code in XML file

Close the project

ONOOAWNE

Entering the program may precede declaration of variables. Closing the project saves
all files in the project folder including binary code (.xcp) and data file (.dcp) for
simulator and configurer.

New file
* File > New (Ctrl+N)

File | Edit Wiew Project

0 new ! or in toolbar.

Empty NoName project appears in the project tree.

[% HoMame0
= POU
1 Global variables
i Tazks

41, Libraries

Project name

The project is given the name START_STOP entered in Project properties window.

* Project tree > Select the project (NoName)
Project properties can be opened in four ways:
1) Context menu > Properties

] NoNamezy —
[POL Add ke k
1. Glob Delete item 2
i Tazl

+-{Z Librg Properties
= J

2) Project > Options

11

File Edit Wiew | Project | Toaols ‘Window

F Y S|SB euid Fé
Rebuild &l
iz POU Clean
E ?iizl vaiiabl Run sirmulator
--{b Libraries Pm Run configurer
Ikem »
Export 3
Imnpork 3
Tools 9
Make copy

Opkions |

3) Project > Iltem > Properties

File Edit iew | Project | Tools Window Help

F Y S | B euid Fé - | E by by
Rebuild al =
E. Fol Clean
g ?LDSTSI vatiabl Fun sirulatar
--{b Libraries P@ Run configurer
| Item 3 add
Expart r Remove
Impart r Renarie
Tools b Edit Ctrl+
Make copy Properties

4) Alt + Enter

» Enter the name and eventually fill other information cells of Project properties
(created and compiled are filled automatically). The name must be correct
identifier in ST, so without spaces inside or digits at the beginning (see ST
language overview).

12

Project properties Z E| [zl

General

Praject name: \START_STOP |

File location: | |

Wi zpecification: |E:'\F'r0gram FileshCPD 2w b Wwbd -5 A T arnl |

[nfarmation

Praject versian: |2E|_EI4.2EIEIEI |
Froject manager: |F||:|I:|in Hood |
Company: |Sherwu:u:u:| Forest |
Created: | 23 sierpria 2009 15:03:21 |
Compiled: |1 shpcznia 0007 00:00:00 |
Autoeincrement |EI |

After OK the new name appears in the project tree.

&
. POU
| Global variablesz
1 Tazks

1= Librariez

The contents of Version, Manager and Company cells will be downloaded to the
controller together with the program. By reading it back you can always find out what
program is executed.

Global variables

Global variables can be used in all programs of the project. Three ways of
declaration are available:

1) Global variable list

2) Individual declaration of each variable

3) VAR_GLOBAL declaration before the program.

The first way is most common. Individual declarations are described in the next
section. VAR_GLOBAL before program, requires changes of a few options (see For
advanced users).

Global variable list
* Open the list in one of two ways:

1) Select Global variables (project tree) > Context menu >
Edit variable list

13

. POU
=
[Tasks Edit wariable list

i = |k —rime

2) Project > Tools > Global variables
Empty list is displayed.

Global variable list

Yanable parameters

Marme: | Type: »
| | | |

Attributes: [Constant [Retain [sddress: |

[Initial walue: I:l Comment; | |

Declared vanables

Marme Type Aftributes Addresz

e Group of variables, type
The group consists of variables of the same type with adjacent addresses, so
START, STOP and ALARM here. Names are entered in Name cell, Type selected
from drop—down list or typed in (type first characters, press the arrow | and the
editor will match the rest).

Remark. STRING, USINT, UINT, UDINT and ULINT types are not implemented
yet.

* Address
Selection of Address option automatically fills the cell with first unoccupied
address, so 0000 here. For types other than BOOL, the address begins with the
sign % and size prefix (ST language overview). If Address is not selected, the
variables are located automatically.

» Constant, retain
Attribute CONSTANT declares a variable which does not change during program
execution, and RETAIN a variable whose last value is kept in memory despite
power failure.

 Initial value
If the option is not selected, the variable is set initially to default value (usually
zero). For RETAIN variable the initial value applies for cold start only (i.e. after
downloading the program). In case of warm restart (power resumed), the last
value kept in memory is used. Non RETAIN variables are set to initial values both
during cold start and warm restarts.

14

« Comment
Text from the cell is displayed in the project tree and in autocomplete hints

(Ctrl+space).

* Add
Pressing the button fills the list with declared variables. If the Address option is not

selected, text auto appears in the last column.

Global variable list

Y ariahle parameters

Mame: |START, STCOP, ALLEM Type: |BOOL w
Mtibutes:] Constant [] Retain Address; | 0000
[T Initial wahse; Comment;
Declared variablez
Mame Type Attributes Address

mm START BOOL global, hardware 1/0 20000 = 0

wm STOP BoaL global, hardware /0 Z0007 =» 1

mm ALARM BOOL global, hardware 1/0 20002 = 2

* OK closes the window. START, STOP and ALARM appear in Global variables
section of the project tree.

=) g START = g STOF
=R Global variables Eeel BOOL Eeal BOOL
mm START 2 0 i 1
am STOF ﬁ FE0000 ﬁ F&00m
mm ALARM L L

The variables involve type, physical and logical addresses (or auto), and ev.
comment.

« MOTOR variable
It could not be declared in the previous group since its address is not adjacent
(0008). Select Address and enter 0008 instead of initial 0003.

Wariable parameters

Mame; |MOTOR Type: EOOL L

Attibutes: [Constant] Retain Addrezs: | 0008

After Add and OK, MOTOR shows up in the project tree.

Replace, Remove

Selecting a variable in the list recreates its name, type and attributes in the upper
cells. To make corrections, enter new data and press Replace. Remove deletes
selected variable. Selection of a few variables (Shift or Ctrl) recreates only those
parameters which are the same. New entry and Replace makes change in all
selected variables.

15

Remark. The CPDev package provides first free address for the group being
declared, but does not check whether the whole group fits into the area before
variables placed further down (if any). In case of collision the overlapping
variables are shown in red.

Program

Name of the program is entered in Program properties window.
Program name and preview

« Select the project > Context menu > Add item > Program

[W Add item 3 Task

% POU

=[5 Global v Delete item » | Prograrn |
S5TA i
: o10 Properties Global wariable

o ALAFIM Function
o MOTOR Function black
5= Tazks

The window can also be opened by:
Select POU > Context menu > Add > Program

T e T]
i
= Gl Add » | Prograrn
| | |

* Enter program name, here PRG_START_STOP (initial PRG is left to distinguish
program from the project). Due to Auto synchronization of project names
(Environment options) the name appears simultaneously in the line 001 of the
code field.

Program properties

Program name:; PRG_START_STOP |

Program code:

o0l PROGRAEM PRG_START _STOP
00z VAR

ooz

o04 END VAR

aos

o0& END_PROGRAM

16

OK. The project tree involves PRG_START_STOP in POU section.

[START_STOP
=[S
[F PRG_START_STOFR
1= Global variables
1 Tazks
1= Librariez

* Double click PRG_START_STOP.

The program window in edit mode is displayed (Automatically unlock window for
editing).

File Edit “iew Insert Projectk Tools Window Help

FRR=A" M= REN RS) B bel e
[# START_STOP START_STOP.PRG_START_STOP :: program (ST)
=-{Z POU
001 PROGRAM FPRG 3ITART ITOP
P PRG_START_STOPR e [

| Global variables
7 Tasks
= Librariez

ooz

oo4 END VAR
ons

oos END_PROGRAM

Enter the code

e Code of PRG_START_STOP is shown below. VAR _EXTERNAL declarations
indicate that the global variables START, STOP, ALARM and MOTOR are used in
the program. Body involves single assignment statement with expression
corresponding to control diagrams at the beginning.

START _STOP.PRG_START STOP :: program (ST)
001 PROGRAM FRG START STOP
ooz
003 VAR EXTERHAL

004 A3TART : BOOL:
aas 3T2F @ BOOL;
0oa ALARM : BOOL:
a7 MOTOR @ BOOL;

008 ENWD VAR

oos

010 MOTOR := (START OR MOTOR) AND NOT STOP AND NOT ALARM:
oll

01z END_PROGRAM

While entering the code, functionally different elements are shown in different colors
and ev. bold. The editor is equipped with a number of useful shortcuts (Supplements).

Remark. The code can also be entered in Program properties window.

17

Preview vs. editing

Program and other elements of the project may be inspected in preview mode,
protected against modifications. Preview is activated by:

» Select the program > Project > Item > Lock (Ctrl+D)

| Lack rbp |

Return to edit mode is similar.
* Project > Item > Unlock (Ctrl+E)

| nlock, CkrHE |

Task

Single task is available in the current version of CPDev. Name of the task and
programs are declared in Task properties window.

» Select the project > Context menu > Add item > Task

ERSTART cTnD STADT €TAD DD €T
Task

5 Delete iterm 3 | Prograrn
-

» Task name and type. Cycle time
Fill appropriate cells, i.e. with TSK_START_STOP, Cyclic and 200 ms here. As
soon as possible means that immediately after completing one execution, another
begins (so—called PLC mode).

Task properties Q@JFE

Tazk name: T5K_START_STOR
Task type: &) Cyelic () & soon as possible
Cycle interval: 200 - Time unit: ms W

Ewecuted programs: A ailable programa:

PRG_START_STOP

I .v ./\
" i

» Select PRG_START_STOP from Available programs and with upper buttons
transfer it to Executed programs.

18

Executed programms: Available pragrams:

‘ PRG_START STOP

OK
TSK_START_STOP appears in Tasks section of the project tree.

EFSTART_STOP

=-{=Z POU
P PRG_START_STOP
=% Global variables
am START
am STOF
o ALARM
e MOTOR
= {5 Tasks
1i TSK_START_STOR
{ % Libraries

Remarks. Programs stored in linked libraries (if any) appear in Available
programs. A program repeated in Executed programs is executed more often.

Save project in XML file

New project must be saved in XML file before compilation. Recall that the
START_STOP folder has been opened at the beginning for all files of the project.
Current code is saved in Start—Stop.xml file in that folder.

* File > Save (Ctrl+S) or

(5 START_STOP v|
| Start_Stop w |
[4ML Test Files [*aml] “| [Windows XP]

xml extension is provided automatically.

Compilation

The program is compiled to universal executable code in binary format for virtual
machine (runtime).

» Select the project (or any element of it) > Project > Build (F6)

File Edt WView Insert .__E‘_rpject__ Tools indow
ARNEA" (= RN Fe B
REMENE i |
=& POU Clean

19

Message window shows compilation results.

@ Building the item "START_STOP". Started at 16:57:09
@ Compiligtion of "START_STOP" completed at 16:57:09.
@ Linking "START_STOP" completed at 16:57:09.
@Statistics: Errorz: 0, Warnings: 0, Hints: 0

Global variables declared without addresses obtain physical addresses seen in the
project tree, in parentheses. Logical addresses are still denoted by auto.

Error and warnings

Error is indicated by red cross with corresponding description. Double click the
description and program code is displayed with cursor in the line with the error (most
probably). Errors caused by other reasons than violation of ST syntax are indicated
at the beginning (line 0 or -1).

@ Building the item "START_STOP", Started at 17:00:02

a Compiliation of "START_STOP" failed at 17:00:02.

6 Start_Stop.cati@d5 Unmatched brackets [and 7T or T and '

6 Start_Stop.cett@30 Can not generate body code for program "START_STOP.PRG_START_STOP"
lE)Statistiu:s: Emors: 2, Wamings: 0, Hints: 0

Yellow "road” sign indicates warnings. If, for instance, ALARM were assigned the
address 0001 (as STOP), the following warning would appear.

& Start_Stop.cet@Linker 24+ Vanable "START_STOP.ALARM" declared with AT uzsing overlapped memory at addres=":0001""; zize="1"

Double click the warning to open Global variable properties individual window for
ALARM.

em S TOFP BOOL global, hardware 140 20001 =1
= ALARM EOOL global, hardware 1/0 #0001 =» 1
um MOTOR BOOL global, hardware /0 0008 => 8

The address must be replaced and accepted.

20

Global variable properties
“ariable parameters

Tupe: |BOOL v|

Attributes: [] Constant] Fetain Address: %0001
[Initial walue: I:I Comment: | |

IEC E11:31-3 declaration
00l VAR GLOBAL
00z ALARM AT 0001 : BOOL:
003 END_WAR

S
|

Group correction of global variable list is also possible (Supplements).

Save and close the project

The project is saved both in binary format (.xcp) and semi—compiled form (.dcp) for
simulation and hardware configuration. Some intermediate files are also saved.

» Select the project > File > Save (Ctrl+S)

» File > Close
CPDev - closing the project window is displayed with Save changes question and
information on file location.

CPDey - closing the project

» | save changes inthe project "START_STOP"
\"‘:J/ File location " Program FilesiCPDeyiPraxisiMy_projects\START _STOPYStart_Stop, xml

[Tak l [hie:] [Anuluj]

The question is asked even if no changes have been made (see For advanced
users to remove it).

Remark. The START_STOP project will be extended in the next section, so it is
closed here solely for demonstration.

21

LIBRARY TIMERS

Delayed switchings

The START_STOP system will be extended by turning a pump on and off 5 seconds
after the motor. The IEC 61131-3 standard defines a set of function blocks including
three timers. Two of them will be used here:

TON — on—delay
TOF — off-delay.

Input/output symbols, types and time diagrams are shown below.

TON TOF
BooL—] IN Q |—BooOL BooL— IN Q |—BooL

TIME — PT ET— TiME TIME — PT ETF— TIME

IN IN LT
Q_ [T QT

e eT_L

Let the instances of TON and TOF be declared as ON_DELAY and OFF_DELAY.
The former program will be extended by statements implementing cascade
connection of the following blocks.

ON_DELAY OFF_DELAY
TON TOF
MOTOR IN Q IN Q PUMP
wss —|PT ETF— #s —|PT ET

The PUMP signal will be sent to the same binary output module as MOTOR, so its
logic address is 0009.
Open existing project

* File > Open (Ctrl+O) or
Find START_STOP folder and open Start_Stop.xml file.

) START_STOP v

Skark_Skop, xml

The project tree appears in interface window.

22

A START_STOP
g PO

| Global variables
i Tazks

{ % Libraries

IEC_61131 standard library

The timers TON, TOF are stored in CPDev IEC_61131 library (linked to the project
by Environment options > Projects).

[START STOP =il
[POU {71 CTD
| Global variables ﬁ EIHD
(57 Tasks % el
=157 Libraries H_TH||3
YIEC 61131 {1 A
- % Rs

Library content is displayed by unfolding the tree (above) or opening Library
properties window.

* Select IEC_61131 library > Context menu > Properties

Library properties |'._||'E|[z|

Library information

Library name: | [ESMEIRER |
Copyright: |Katedra Informatyki | Automatyki / Palitechnika Rzeszowska |
File location: |E:HPrngram Files\CPDevLibraneshEC_E1131.lcp | []
Frotection:
Menu path: |Basiu:.-’IEE |
Wersion: 0 2.2 2.0 & 0 2| 3sierpria200910:12:24 |
Objects in brany

Object name Object type -

= Toggle all

ffcio furction black
o function black
fcTun furction black

I F_TRIG furction block)

It R_TRIG function black E]
IR furction block

[#] I SEma function block. b E]

Remark. Time of the last compilation of the library is given in Version.

23

¢ Buttons

L] — selects a library (transfers to Libraries folder)

Toggle 4l — reverses selections of all objects
— shows declaration of selected object

— reverses selections of function blocks

L2 L) [] - as above, for programs, functions and global variables,
respectively.

The button L] is active only while exporting or importing the library (Project >
Export/Import > Library).

* Timers TON, TOF
Remove selections of other blocks than TON, TOF.

Object name Object type b

O {%rs furction block,
] {7 sEma function black
{7 sr furction block,
T 1oF function black
f1om furction block,
Oftre furction block,

Compiler links only those objects which are selected.

Extension of START_STOP project
The PRG_START_STOP program will be extended and variable PUMP declared.

Program
* Double click the program PRG_START_STOP in the project tree.

Supplement the code with:

— declarations of the instances ON_DELAY, OFF _DELAY

— declaration of the use of global variable PUMP

— statements corresponding to the cascade connection of the blocks and
assignment to PUMP.

24

START_STOP.PRG_START_STOP :: program (ST)

001 PROGRAM PRG START STOF
o0z

003 VAR

004 ON DELLY : TCN:
00s OFF_DELAY: TOF:
006 END VAR

ao?

00% VAR EXTERHAL

0zl
0zz EHND FROGRAM

uful-] STALRT : BOOL Qi3]

010 STCOP : BOOL

011 ALLAERM : EODOL

01z MCTOR @ BOOL:

013 PUNP H: Ll | “STRITE) H

014 END_VAR

[INR

0le MOTOR := (3TART OR MOTOR) AWND MNoOT STOP AWD NOT ALLEM: (* MOTOR output =)
17

0lg ON DELLY [IN:=MOTOR, PT:=t 1 (% TON block - delaved turn oni 1
013 OFF_DELAY (IN:= ON_DELAY.Q, PT:=t J: f® TOF block - delaved turn off #)
o0zo PUMP := OFF DELAT.Q: (% DUMD output *)

B[(=1E3

(% TON block instance #)
(% TOF block imstance #)

Optional directives (*$READ*), (*$WRITE*) assure "read—only” and "write—only”
properties of declared variables. Input/output structure of function block can be
recalled as tip in the project tree, or in the main window by selecting the block and

clicking Enter.

=-{Z Libraries
= [l 1EC_E1131
=% TOF
IN
o FT
Oy o
O ET
{7 TON

001 FUNCTIOH BLOCKE TON
00z VAR THPUT

003 IN : BOOL:

o004 PT @ TIME:

005 END VAR

0os VAR OUTPUT

oo7? 2 @ BOOL:

ooz ET : TIME:

005 END WAR

alo coo

011 END FUNCTIOH ELOCK

Remark. The two lines 19, 20 in the program code can be replaced by single
one by using internal assignment Q=>PUMP.

018 ON DELAY (IN:=MOTOR, PT:=t

019 OFF DELAY(IN:= ON DELAY.Q, PT:=t#5s,

ozo
0z1 END PROGRAM

Autocomplete

1
O=>PUMP) :

Name of type, function, variable, etc. may be automatically completed after writing at
least one character, but only if the project at current stage has been compiled to
acquire the names (Build). Pressing Ctrl + space generates list of names with the

same beginning.

013 OFF_DELAY (IN:= OM_DEL
0z0

| ocal wariable

OH DELAY : TOM

25

New global variable
» Select Global variables > Context menu > Edit variable list
Fill in upper cells and press Add.

Name: |PUME | Type: |BOOL v]
Attributes: [] Constant [] Retain Addresz; 0009 |
Compilation

» Select START_STOP project
* Project > Build

Individual declaration of global variable

The variable PUMP can be also declared individually, what may be more convenient

sometimes.

« Two ways are available:

1) Select START_STOP project > Context menu > Add item > Global variable

2) Select Global variables > Add variable

= PO Add ikem 3 Task
P‘ Delete ikem 3 Program
{Z Glo .
- Tas Properties | Global wariable
. I
& Ta Edit wariable list
& Lib
= | Add variable |

« Upper part of Global variable properties window should be filled in as before, lower

part is updated automatically.

Global variable properties

Wariable parameters

Name: |PUMP Type: |BOOL

attibutes: [] Constant [] Fetain Address:

ooog

[Initial walue: I:I Comment; |

|IEC E1131-3 declaration

001 VAR GLOBAL
00z PUMP AT 0005 : BOOL;
003 EHD VAR

| ™

26

Recall that this window is also used to correct overlapping addresses.
» After OK the project tree is supplemented with PUMP.

EBES] Global variables
) m START
g STOP

- mrm ALARM

mm MOTOR

Project report

» Project > Tools > Report

EBl Report from compilation of the project: “START_STOP*

Project report

Praject information

Froperty name Property value L]
Project name START_STOR |
Dizk file location C:AProgram Files\CPDevWPrazishSTART_STOPAStart_Stop.xml

Imported libraries [EC_E1131 W

Yariable list after compilation

Full name Address i odbus SMC

START_STORS..

BOOL

START_STOPS.. 1 1
ALARM START_STOP.A.. |2 BoOOL 2
MOTOR START_STOPM... B BoOOL g
START_STOPP.. |3 3

Memary uze

Code memarny: Data memony:

Controller tazk list

Full name Tazk type Interval

TSK_START_ST... |START_STOPR.T...

Full name column involves variable names preceded by project name (also in case
of tasks).

27

Sorting

Initial order of variables in the report corresponds to declarations. This may be
changed by clicking header of a column what shows the sign of increasing “ or
decreasing * sorting. Depending on the column, the sorting may be either
alphabetic or numeric. The first one is shown below.

Yariable lizt after compilation

M ame: Full name Addresz | Size Tvpe gﬁ%bus m?l'dl_lljﬂSEH
ALARM START_STOP.A.. |2 1 BOOL 2 40003
MOTOR START_STOP.M.. | 8 1 BOOL a 40003
FUP START_STOR.F... BOOL 400710

S START | START_STORS.. _- BOOL _ 40001
STOP START_STOP.S.. BOOL 40002

HTML report file
Click Save to file in the previous window to save the report in HTML format.

{Z CPDey - Report from compilation of the project: "START_STOP" - Windows Internet Explorer

- ‘_féC:\ngramFl\Es\CPDev\Prax\S\ETARLSTOP\StartthD‘htm\ v‘ 4| % |

Pik Edycia Widok Ulubione Narzedzia Pomoc

w g ['_@CPDBV-RBDMFrumcompi\at\onufthepm]ect:”STA.‘.] 1 B - - @ e G

Report from compilation of the project: "START_STOP™

Project information

Property name Property value

Project name ISTART_STOP
Disk file location IC:\Program Files\CPDev\Praxis\START_STOP\Start_Stop.xml
Imported libraries IEC_61131
Report generated at 13 wrzednia 2009 11:09:16
[Company KIA PRz
Project manager ICzerwony Kapturek

ersion 28.12. 2007
Project creation date 28 grudnia 2007 19:53:05
Date of last compilation 13 wrzesnia 2009 11:09:16
Physical version 36

Variable list after compilation

Name Full name Address Size Type Modbus SMC Modbus INTOUCH
|ALARM ISTART_STOP.ALARM 2 1 BOOL 2 140003
MOTOR ISTART_STOP.MOTOR e 1 BOOL e 140009
PUMP ISTART_STOP.PUMP 9 1 BOOL 9 40010
START ISTART_STOP.START o 1 BOOL o] 40001
STOP ISTART_STOP.STOP 1 1 BOOL 1 140002
Memary use
Code memory: 430
Data memory: 60
Cantroller task list
[Name Full name Task type [Interval
Gatowe 4 MG komputer |

Project save
* File > Save (Ctrl+S)

Remark. The window indicating the path is not called up now since location of
the file has been determined already (previous Save).

28

PROJECT SIMULATION

The purpose is to check operation of the project before final implementation. Both
off-line and on-line tests can be carried out.

Run CPSim simulator

Three ways are available:

1) CPDev menu: Project > Run simulator

File Edit %iew Insert | Project | Tools MWindow

PN AL G| B B 2
@ START_STOP
== POU Clean

M PRG_START_STOF
= Global variablez
{&Zr Tasks Ii’. Run configurer

‘ Run simulator

2) CPDev menu: Tools > Simulator

File Edit Wiew Insert Project | Tools | Window Help

NEH AL |G Errvironment options

Global setkings

@ START_STOP
=% FOU

Compiler
[PRG_START_STOP -
|7 Global variables Sirmulatar

[5r Tasks

Zonfigurer

3) Start menu: CPDev > CPSim

ABE Industrial IT r

Wonderware FackorySuite 4
Wanderware Y ' CPSim

rﬁ CPDey ﬁ! Deinstalacja programu CPDey

The first way is used directly after compilation (Project > Build), what creates .dcp file
read automatically by CPSim. The next two ways require opening the .dcp file from
CPSim window.

29

Open file for simulation

* File > Open DCP file or =1 (CPSim menu or toolbar, see below)

Remark. If the project has been simulated already and session data saved, the
guestion Do you want to open saved session as well ? is displayed.

\g) Do wiol wank ko open saved session as well 7 (Start_Stop,scp)

[otak || me]

Simulator window

The window consists of two parts:
— variable tree
— view area

't CPSim ;: Simulator, - Start_Stop.dcp :||E|r>__(|
File Trace Wiew Tools SWindow

A=A - =N T«

Start_Stop

-] Global variables
= Global wariables

W ariable

e PUMP
=B Task TSK_START_STOF
= B Program PRG_STAR]
=-FF ON_DEL&Y
-7 OFF_DEL&Y

3

The variable tree differs a little from the project tree before. The view area presents
initially the list of global variables or collection of individual windows for such
variables (also called variable views). Panels for groups of variables or additional lists
can also be placed in the view area. Scroll bars provide access to components
outside (if any).

30

CPSim menu

File Trace Wiew Tools Sindow

File Trace
Trace | MWiew Tools Window
P Start F5 o
'3 \
Fle | Trace Wiew Tools ‘Windo I able Walue
: L_’-F Open DCP File., Chrl4+0 wl | Cold start Shift+F5
._; Open session, .. I. P
) f R4
Hﬂ Save session Chrl+5 o
Save session as... i ’ | Data source » Sirmulatar
Exit Alt+F4 | I Madbus-5MC
View Tools Window
Wiew | Tools ‘Window Yfindow
ol Tools | Window = arrange
E | Group panel... Program opkions. .. Close all
! System stat ings. .. 7 i
i | wskern state) GIu:ubaI_CF'Dev settings 1 Global variables

Simulation session data can be saved in a file to repeat it later. Trace controls CPSim
operation, so starts or stops it reads (Supplements) or logs variables, and selects
data source, i.e. either Simulator (off-line) or Modbus—SMC (on-line). Window >
Arrange places individual windows side—by-side.

Toolbar

= A - N =

il Open DCP file = Open session | Save current session .= Group panel

= Arrange windows P start trace ' Stop trace ' Pause or resume trace

< start program & reset RETAIN variables

Start, stop and pause

« Trace > Start or »

Simulation begins from initial values of variables (as first start after downloading
the program into the controller). View area shows the results.

31

AED]

3 CPSim, :: Simulator - Start_Stop.dcp
File Trace Yiew Tools ‘Window

=A== L0 = I R

Global variables
‘W ariable

B.;. Global variables
{0 bemmm START

Fi Task TSE_START_STOF

| =

s?
(B8 Jomooos

Bottom bar indicates simulation progress.

* Trace > Stop or

This corresponds to power brake in real controller, so last values of RETAIN
variables are saved.

« Another Trace > Start or .»

Warm restart after power brake is simulated, so RETAIN variables are set to last
values and non—RETAINS to initial.

e . Pause or resume trace
Simulation stops and resumes without any change of variable values.

e Trace > Cold start or

This represents cold start, so simulation begins from initial values of all variables
(as first start after downloading).

Variable list

* Enter value or variable

— Select corresponding cell 0

_ Click for editing | ol

]

— Enter new value, press Enter

Values after 5 seconds since 1 has been entered for START are shown below.
MOTOR and PUMP are turned on.

32

Global variables

" ariable
START 1
STOF 0
ALARKM 0
1
1

MOTOR
PUMP

* Add variable
Select variable in the tree, drag it to the list and drop (keeping pressed left key of

the mouse).

« Remove variable
Select line > Context menu > Remove

| Remove

Variable views (individual windows)

* Add view
— Select variable in the tree.
— View of the variable can be opened in three ways:
1) Drag—and-drop the variable in view area.
2) Menu: View > Variable view.
3) Context menu: Variable view.

Variable view for MOTOR is shown below.

P p.dcp [
Fle Trace Miew Tooks indow Help
A 1 i = A T
B & Start_Stop T TR T

W Sl atebes ariable Value

wm START
e STOFP START
wm ALSRM STOP
._ MOTOR ALARM
o PUMP
=B Task TSK_START_STOF
= Program PRG_STAR §| PUMP
-7 OM_DEL&Y
- OFF_DEL&Y

=l |la|—|

W alue: 1 !

e
00:11:03

| %

33

New values are entered in the same way as in the list.

* Close view
Click

» Additional information on variable
Click ¥ to show lower part of the variable view, with type, address and full name.

pPUMP]

W alue: | |

Advanced
Type: BOOL |
Address: | 0009 |

Full name:
\START_STOP.PUMP |

Group panels

Two kinds of group panels are available:

— control panels

— variable lists.

Variable lists look the same as the list of global variables before. Panels with control

elements are created as follows:

+ View > Group panel or .-
Panel properties window is displayed.

Panel properties El
|

Mame: | Panel

Fanel type
(%) Control elements () Variable list

After creating the panel drag and drop on it
variables from the variable tree

» Enter name, select Control elements, press OK.
Empty panel with the name (INPUTS) appears in the view area.

W ariable

e =

34

* Fill in the panel with appropriate variables by drag—and—drop from the tree. Panel
grows automatically. Boolean variables are represented by rectangles, variables of
other types by text cells.

_ BECIRETTE [motor | [pure |

Panel in trace mode

Colors of rectangles depend on values. Click the rectangle to reverse value.

START STOP]

- - |F'.LF'.RM | |MOTOR | |F‘LIMP |

Program options

» Selecting Tools > Program options opens the window with four tabs.

Options §|

Session |In|:|ut file | Oukput file | Crata zource

Interface

Open global variable views autornatically
() Usze individual wariable windows
[Limit number of windows to waorkarea

(®) Usze variable list

[] Always open SCP session file while opening DCP [if exists)

[] Open variable views in advanced mode

* Session

The option Open global variable views automatically opens either the list (default) or
collection of individual windows. The number of such windows may be limited for
large projects. The question Do you want to open saved session as well ? asked at
the beginning is dropped if the option Always open SCP session file ... is selected.
Open variable views in advanced mode opens lower parts of individual windows.

35

e Input file
The tab defines .inp file for simulation controlled automatically (Supplements). Path
to the file can be chosen by pressing C]or entered directly.

Options @

Path: | | m

Read varable values while tracing

e Output file
Simulation results may be recorded in .out file (default name as project file name). If
the file exists already, its content may be overwritten or appended.

Options E'

Session | [nput fle | Dutput file |Data sOUNCe

Path: | | E]

Store vanable values in output file

Append to exizting file

» Data source
The tab is equivalent to Tracking > Data source in the menu, so it selects either off—
line simulation or on-line commissioning (for SMC controller). Communication
parameters can be checked by pressing Configure.

Options r)__<|

Sezszion | Input fle | Output filel Data SI2'Uf'3'3|

Current data source;

Sirmulator b Configure...

Modbus-SMC

36

RTC CLOCK

Problem description

Temperature in an apartment must be kept at given level SP (Set Point), higher
during the day, e.g. 22°C, lower at night, 18°C. Actual temperature PV (Process
Variable) is measured by analog input. If SP>PV, heating furnace is turned on by
Control Variable CVF (CV Furnace) from binary output, and if SP>PV the furnace is
turned off. However, to avoid frequent switchings, the furnace can be turned on again
only if the temperature PV drops below SP by at least 0.5°C (hysteresis). Circulation
pump, controlled by the output CVP (CV Pump), is turned on all time during the day,
and at night when the furnace is on and between the hours 23.00 and 1.00, no matter
whether the furnace is on or off (the day is understood as the period between 6.00
and 20.00).

Sample diagrams

Furnace CVF || L‘ ‘ m
Pump CVPU || |

Time 1:00 night 6:00 day 20:00 n. 23:00

Control system

The controller CNT measures the temperature PV and controls the furnace and
pump by the outputs CVF, CVP. It also communicates with PC computer, which:

— sets the set point SP,

— monitors the variables PV, CVF, CVP.

Temperatures at the controller side are denoted by SP, PV and at PC side by SP_,
PV_ (different formats).

CPDev

SCADA @
PC CNT |
o [X
USB © Al BO
- o :
SP_, PV, o S
CVF, CVP SP, PV, O O
CVF,CVP b o
PV CVF
CVP

37

Analog input

Temperature in the range 0...100°C is measured by a transmitter with voltage output
0...10V. A/D converter converts the voltage to REAL number PV in 0.0...10.0.

Communications

Assume that PC and the controller can exchange data of the types BOOL and INT
only. So the temperatures SP_, PV_ at PC side are INT variables. Accuracy 0.1°C is
required, so the range of SP_, PV_ corresponding to 0...100°C, is 0...1000

(SP=SP_/100, PV_=PV - 100). For instance, the set point 20°C is represented by
SP_=200 in PC and by SP=2.0 in the controller.

RTC project

Global variables

Global variable list
Yariable parameters

Mame: |SF_ Type: b
.;’-\tlnbutes l:l Constant Fetain Addresg; w0005
Imitial walue: (200 Comment: |32t Point - PC
Declared variables
M armne Type Attributes Address

mm 5P REAL global, hardware 120 200000 = 0

mm PV REAL global, hardware 1/0 ZD0O =» 4

mm CWF BOOL glabal, hardware 1/0 20008 =8

wm VP BoOL global, hardware 120 20009 =9

global, hardware 140, retain w0005 = 10

o F"‘u" INT glabal, hardware 1/0 w0006 => 12

Note that corresponding pairs of variables can be declared as groups.

Set point temperature SP_ received from PC is declared as RETAIN, with initial value
200. So SP_ will be kept in memory despite power failure (warm restart) or
communication brake. From SP_=200 (20°C) the controller will begin operation after
downloading the program (cold start).

Program

PRG_RTC program of RTC project is shown below. Comments seen in the project
tree are entered during declaration of variables. The task TSK_RTC is executed
every 200 ms.

38

#* CPDey.

File Edt iew Insert Project Tools

PN EH S LSS

[RTC
== POU

‘| PRG_RTC
=2 Global variables
D gddcp

g s 00T
C I Process Variable - controller
i e CVF
| CVP
C O mm SP
LT INT

w10

o 5 005
: I Set Paint - PC
o PV

-5 Tasks

P |1i TSK_RTC

[Libraries

FOU | Riesources | Types|

‘Wwindow Help
rree

RTC.PRG_RTC :: program (ST)
001l PROGRAM PRG_RTC
ooz
003 VAR EXTERHAL
004 END_VAR
00§
006 VAR
007 C_DATE :
008 ¢ TIME :
003 END_VAR:
oLo
oLl SF
o1z
013 C_DATE := GET_TST():
014
015 IF CVF
ole
017 CWP i= C TIME »= TIME OF DAY/
ol
oL
oz
ozl PV_
o2z
0z3z END_PROGRAM

DATE_AHD TIME:
TIME OF DAY:

= INT TO_REAL(SE_)/100.0:

OR CVF}

[l 51 il =t
(* Current

THEH CVF := PV < 5F: ELSE CVF := PV < 5P - I

OR [C_TIME <= TIME OF DAY#(1:

DATE AND TIME
TIME)

C_TIMNE := DT_TO TOD(C_DATE)

15: END_IF

0 AND ¢ TINE <= TIME OF DAY/:
1 OR ©_TINE »= TIME OF DAY#ZG:

':i-) Evilding the item "RTC". Started at 07:2504
@ Compiliation of "ATC" completed at 07:29:04.
@ Linking "RTC" completed at OF:29:04.

"\i) Statistics: Errors: 0. Warnings: 0, Hints: 0

The directive (*$AUTO*) after VAR_EXTERNAL automatically includes Global
variable list into compiled program. Two local variables, C_DATE and C_TIME,
are declared.

Statements in the lines

11: conversion of INT value received from PC into REAL, followed by
adjustment of the range.

13: setting current date—and-time C_DATE to value returned by system
function GET_TST() which reads the controller's RTC clock when the task
begins (Get Task Time). Separation of current time C_TIME from C_DATE
by DT_TO_TOD() conversion (Day_and_Time To Time_of Day).

15: determination of the furnace control CVF by comparison of measurement
PV and set point SP temperatures, taking into account 0.5°C drop after
turning the furnace off.

17: determination of the pump control CVP, switched on all time during the
day, at night between 23.00 and 1.00 and when the furnace is on.

21: conversion of REAL to INT after adjustment of the range, to be read by PC.

Simulation

The window shown below corresponds to 9 a.m. The measured temperature 16°C is
lower than the set point 20°C, so the furnace is turned on. Pump is also on (daytime).
Individual window for the set point SP (controller side) is shown under the list.

39

e

n :: Simulator - RTC. dep

&l s

HaSlk
B & ATC

£l Global variables
L

L CvE

o SF_

-0 Task TSK_RTC

< i} | |

Global variables
Wanable

00:02:31

40

USER-DEFINED LIBRARY

Library as a project
A library with two function blocks will be created:
» FB_AVERAGE - average of three inputs

IN1+IN2+IN3
3.0

« FB_PULSE - single pulse after time T since rising edge appeared at the input

OuT =

N

)
L lcycle
]

—e—=

Pulse may be generated by the following block diagram:

R _TRIG RS TON o
CLK Q s Q1 IN Q

R1 — PT ET
T |

User library is created as a new project with programs, function blocks,
functions and global variables (or only some of them).

New project
* File > New
NoName appears in the project tree.

* NoName > Context menu > Properties
Enter name in Project properties, for instance PROJ_MY_BLOCKS.

41

Project properties
Gereral

Praject name: \PROJ_MY_BLOCKS |

File: location: | |

W specification: |E:\F'mgram FilesWCPD ey kS -SMC sl |

Information

Froject version: |D.1 |
Project manager: |Fh:||:uin Hood |
Company: |5herwu:u:|d Farest |
Created: |? zierpnia 2009 11:33:25 |
Compiled: |1 shycznia 0007 00:00:00 |
Autoeincrement |D |

New function block
« POU > Context menu > Add > Function block

Function block properties

Function block name: |FB |

Function block code:

00l FUNCTION BLOCK FE
00z VAR _INPUT

003 END VAR

004 WAR _OUTPUT

005 END VAR

o0&

007 EHD_FUNCTION BLOCK

FB_AVERAGE

* Name
Enter FB_AVERAGE. OK inserts the block into project tree.

[PROJ_MY_BLOCKS
-5 1En]
I FB_AVERAGE
« Code

Double click FB_AVERAGE to open editor window. Directive (*$COMMENT?) is
particularly useful for user libraries.

42

- BX

PROJ_MY_BLOCKS.FB_AVERAGE :: function block (5T)
00l FUHCTION BLOCKE FE AVERAGE

ooz [*3COMMENT Akverage of three inputs *)
ooz

004 VAR IHFUT

ook pop [* 3 COMMENT Input @l : REAL:

noe el | F S COMMENT Input 2 *) A HARE

oo7 kil [F S COMMENT Input 3 %) EEEAHARE

o0g EHD VAR

oos9

0l0 VAR OUTPUT

01l iyl [* 3 COMMENT Averar : REAL:
01z EHD VAR

013

0l4 OUT := [(IN14+IN2+IN3)/2.0;

015

0le EHD FUHCTION BLOCK

I'V

4
—

e Compilation
Project > Build

Correct errors, if any.

Function instead of a block
Since FB_AVERAGE does not store internal state, it may be replaced by a function.

[PROJ_MY_BLOCKS |

— Add J Frograrm
L—:‘- |
& Delets > | Function |r

Remaining steps are the same.

PROJ_MY_BLOCKS. FUN_AVERAGE :: function (5T) [= |[8][X]
001 FUNCTION FUMN AVERAGE : BEAL (#RET T¥PE#)
00z VAR _INPUT

FB_PULSE

Blocks from IEC_61131 library will be used to implement the diagram shown at the
beginning.

* Code — part |
Local declarations define block instances.

43

PROJ_MY_BLOCKS.FB_PULSE :: function block (ST) =3
.S

00l FUNCTION BLOCK FE PULSE

ooz [*$COMMENT Puls

fufujc

004 VAR THPUT

oos M [*3COMMENT Rising edge input *) [EEEEiIAE
ooe U [*SCOMMENT Time T) EEREILIHE

007 END VAR

oog

00% VAR OUTPUT

olo 2 [(YICOMMENT Output *) JEE:iilins

011 EHD VAR

0lz

0lz VAR

0l4 TRIG E: R _TRIG: R3 B: R3: TCH _B: TON:
015 END VAR

0le

* Input/output names

Sometimes you may need to recall declarations of library blocks for input/output
names. This can be done in two ways:

1) Select block in the library folder in project tree. Tip with input/output declarations
is briefly presented.

2) Select the block and press Ctrl+] to get permanent window with the declarations.

IEC_61131.TON :: function block (ST)

0oL FUNCTION BLOCK TON
00z WAR TIHPUT

00z IN : BOOL:

004 PT : TIME:

005 END VAR

006 WAR OUTPUT

007 Q : BOOL:

ooz ET : TIME:

003 EHD VAR

oo ...

011 EHD FUNCTION BLOCK

e Code — part i

While entering the code, autocomplete option of CPDev editor is available. Ctrl +
space opens autocomplete list.

017 TRIG B(CLE:=IN):
ols RS E(3:=TH
o1e oc TRIG B:R TRIG

0z0 TRUMC[REALDINT;
e TRUMC[LREALJLINT:

Build-in function

Compilation of the project after declarations is needed to build up the list (see
Supplements). Enter inserts selected word and closes the list; you may also click
the word or click outside. Esc closes the list as well.

44

Final code of FB_PULSE is shown below.

PROJ_MY_BLOCKS.FB_PULSE :: function block (ST) M=
001 FUNCTION EBLOCK FE FULZE
ooz [FECOMMENT Pulse after time T #)
ooz
004 VAR IHPUT
oas I OMMENT Rising edge input) Sl
aoes PN [¢S COMMENT Time T +) [IHE
007 END VAR
oog
002 VAR DUTPUT
olo Q [*3COMMENT Output *) [T RS
011 END VAR
alz
01z VAR

o14 TRIG B: R_TRIG: RS E: R&: TON _B: TON:
015 EHD VAR

0le

017 TRIG B i(CLE:=IN):

01z R3 _B(3:=TRIG_E.Q, Rl:=qQ);

ols TOW E(IN:=BES E.Q1, PT:=T):

0z0 Q:=TCN_B.o:

DEl

0zz EHD FUHCTIOH BLOCK

e Compilation

Remark. You could now write a test program as additional POU unit and run it
using simulator. However, it will be more natural from user viewpoint if we first
export the project as a library, and test it later in another project.

Library export
The project will be exported as semi—compiled library.

» Project > Export > Library

Project | Tools ‘Window — Help

Build F& [

Clean

Run simulatar
P@ Run configurer

Item]

| Library |

Import L Text file

| Export]

Project name is temporarily used as library name.

45

5] Export project as library

Library infarmation

Library name:

Copyright: |
File locatior: |
Pratection:) None () Basic () Estended
Menu path: |
Wersion: O 2.0 & 0 & o £||7sepna2009123233
Objects in library
Object narme Object type
| ﬂ FE_AWERAGE function black
[Fe_PULSE function block

Cancel

Toggle all

Interface

0

&

e Library name

Enter proper name, here My_blocks, version number and eventually fill in other
cells (menu path is reserved for future use in FBD diagrams).

EEl Export project as library

Library information

() Basic () Extended

Library namme: |M_I.J_blocks
Copyright: |Fh3bin Hood
File: location: |

Protection; (*) Mone
tMenu path: |

Yersion: |EI :l . |EI

s/ .o % [0 %]|[7sierpnia200913.00:30 |

Objects in library

Ohbject name
[{f FE_sVERAGE
O T Fe_PULSE

» Library file location

— Click -]

— Select target folder, usually Libraries, enter name of library file with

Ohbject bype
function block,
function block,

extension, here My_blocks.Icp, and save.

| I~ Libraries i |
|h-1 y_blocks W |
| CPDvew Library File [1cp) v |

46

Toggle all

dcp

Filename may be the same as library name (but does not have to).

Export project as librany

Library infarmatian

Library narne: by blocks

Copyright; Fobin Hood

File lozation: C:\Program FileshCPDevhLibranes\y_blocks. lcp E

» Objects for export

Options on the left side select exported objects (both here). Button Toggle all
toggles selected/non—selected, Interface recalls input/output declarations, four
buttons below select function blocks, programs, functions, and global variables.

Objects in libram
Object name Object type
Toggle all
ﬂ FBE_AWERAGE function black
T Fe_PULSE function black

(2]]
(] [am]

* Semi—compilation

OK compiles selected objects into semi—compiled from (.Ilcp extension; Project >
Build produces binary code). Warnings on non—imported dependencies are not
relevant.

& CPD$Librarp$1 46901 25, c2t(@0 Found dependent type "IEC_E1131.R_TRIG" from other source.
& CPD$Library$146901 25, cat(@0 Found dependent twpe "IEC_BE1131.R5" from other zource.
& CPD#Library$146901 25, cat=0 Found dependent type "IEC_E1131.TOMN" from other source.

If no error occurs, My_blocks.lcp is saved in Libraries folder.

|y Libraries »

= 1EC 611313 lp
iy _blocks. lcp

* File > Save
The original project PROJ_MY_BLOCKS is saved

[i i i i 5 Ctr+3
in .xml file, for instance in Proj_My_blocks.xml here. EREE o

Library source code as XML file with original project should be
saved for future use.

a7

Testing

Separate project, here Test_My_blocks, is created. The block FB_AVERAGE will be
tested by sample input data and FB_PULSE by counting number of pulses with CTU
standard counter.

* Global variable list

Global variable list

Warable parameters

N arme: |F | Type: ‘ v‘
.:fl‘n.thibutes [] Constant [] Retain [] Address: I:I
[Initial value: |:| Comment; | |

Declared variables

Mame Type Attributes Address
= REAL global [auta]
wm B REAL global [auta]
mmC REAL global [auta]
m D REAL global [auta]
mmE BOOL global [auta]
amF IMT global [auta)

A, B, C are inputs and D output of FB_AVERAGE, E input to FB_PULSE, and F
output of CTU.

* Test program

[l Test_My_blocks Test_My_blocks.PRG_A :: program (ST) ['. ||'I:I|&|
= [POU e
00l PROGRAM PRG A ~
b PRG_A o — -
=1 Global variables ool wam
A
0B D04 AVER: FE_AVERAGE:
oiol 005 PULSE: FE PULSE:
B oos CTUL: CTU:
oiol ¢ 007 P2C: BOOL:
LUF o0s END VAR
= Tasks ons
 TASK 010 VAR EXTERHAL [#§AUTO*)
=)-{Z Librariez 011 EHD VAR
% IEC_E1131 oLz
=-{l] My_blocks 013 AVER(IN1:=i, INz:=E, IN3:=C, OUT=:D|:
{7 FE_AVERAGE ~
{7} FB_PULSE 0l5 PULSE (IN:=E, T:=t#i=, (=»P2C):
0le CTUL(CU:=PZC, E:=FALSE, PV:=100, CW=:F):
17
0ls END_PROGRAM v
2] >

The project Test_My_blocks uses two libraries, IEC_61131 and My _blocks. The
first one is required by the second as dependent library. FB_PULSE and CTU are
connected by local variable P2C.

48

* Simulation

Compile Test_My_blocks, run CPSim, enter 1, 2, 3 for A, B, C, and set E five
times alternately to O, 1. The variable list of the simulator looks then as follows:

%t CPSim :: Simulator, - Test_My_blocks.dcp |._||E|r>__<|
File Trace View Tools Window Help
= W= - 1 i = T T
= = TESt—MP—bl':'CBS Global variables
=g Global vanables ;
A Wariable
umE
o F
w-Bg Task TASEK

Library extension

It is done by supplementing the library source code (Proj_My_Blocks.xml) with new
components. Export of the extended library is repeated by Project > Export >
Libraries. Previous content of semi—compiled file (My_blocks.lcp) is replaced by the
new one in Libraries.

49

ST LANGUAGE OVERVIEW

This overview is for the readers with some experience in high level language
programming (C, Pascal, scripts). More on ST can be found in John K. H. and
Tiegelkamp M.: IEC 61131-3: Programming Industrial Automation Systems, Springer,
2001, or elsewhere.

IEC 61131-3 standard

Programming languages

The IEC 61131-3 standard (IEC below) defines five languages for controller
programming:

— structured text ST — function block diagram FBD

— instruction list IL — sequential function chart SFC

— ladder diagram LD

ST, a high level language similar to Pascal, is a basis for CPDev package.

Language components

Common components of the five languages are the following:
— datatypes, e.g. BOOL, INT, REAL

— program organization units POU

— configuration elements.

POU units
Three kinds of POUs are defined in IEC:
— programs — functions blocks — functions

Whereas a function for the same input data always yields the same output, output of
a block may be different, as it depends on actual state of this block. Therefore
declaration of block instance to allocate memory for the state must precede usage of
the block.

Configuration elements

Installation and configuration of programs is supported by:

— configuration — tasks — access paths

— resources — global variables

Configuration is called a project in CPDev. Tasks and global variables are sufficient
for configuration of single controller. Programs belong to tasks.

Structure of POUs

Structure of programs, functions and function blocks is the same, i.e.:

— POU type and name

— declaration of variables and function block instances

— program code

PROGRAM, FUNCTION BLOCK and FUNCTION keywords define POU type. Global
and local variables are declared separately. Block instances are declared together
with local variables (within VAR...END_VAR).

50

Identifiers (names)

They begin with a letter or underscore sign _. IEC standard does not make difference
between lower and upper case letters, even in keywords. So the following identifiers
(names) are the same: 1) START, Start, start (variable), 2) THEN, Then, then, 3)
END_VAR, end_var.

CPDev automatically converts lower case letters into upper case (although the editor

still shows them as originally entered).

Identical names in different libraries

Names must be unique within a project or library. If the same name, e.g. TON,

denotes another

block in another

library than

IEC_61131, declarations of

corresponding instances in the program must indicate the library, so:

IEC_61131.TON

Another_lib. TON

Otherwise Multiple name found or Ambiguous... error appears. Actual name
preceded by name of the project or library is called full name in CPDev.

Data types and variables

Elementary data types

No. Name Data types Size and range
1 | BOOL Boolean 1B (FALSE, TRUE = 0,1)
2 | BYTE byte 1B (0 ... 255)
3 | WORD word 2B (0 ... 65535)
4 | DWORD double word 4B (0 ... 2%-1)
5 | LWORD long word 8B (0 ... 2°*-1)
6 | SINT short integer 1B (-128 ... 127)
7 | INT integer 2B (-32768 ... 32767)
8 | DINT double integer 4B (-2°1 ... 2%-1)
9 | LINT long integer 8B (-2% ... 2%%.1)
10 | USINT unsigned short 1B (0 ... 255)
integer
11 | UINT unsigned integer 2B (0 ... 65535)
12 | UDINT unsigned double 4B (0 ... 2%-1)
integer
13 | ULINT unsigned long 8B (0 ... 2°%-1)
integer
14 | REAL real 4B, IEEE-754 format
15 | LREAL long real 8B, IEEE-754 format
16 | TIME duration 4B (-T#24d20h31m23s648ms...
T#0s...#24d20h31m23s647ms)
17 | DATE date 4B (0001-01-01 ... 9999-12-31)
18 | TIME_OF DAY time of day 4B (00:00:00.00... 23:59:59.99)
19 | DATE_AND_TIME | date and time 8B (connection of DATE and
TIME_OF DAY types)
20 | STRING character string variable length

51

STRING, USINT, UINT, UDINT and ULINT types are not

implemented in CPDev yet..

Universal types

Groups of elementary types collected according to applications are called universal.

ANY

ANY_BIT | ANY_NUM ANY_DATE TIME,

BOOL | ANY_INT ANY_REAL | DATE STRING

BYTE |INT |UINT | REAL TIME OF DAy | 2and
- = derived

WORD | SINT| USINT | LREAL DATE_AND_TIME| types

DWORD | DINT| UDINT

LWORD | LINT | ULINT

Constants (literals)

Examples of constants of the types used most often are given below:
BOOL: TRUE, BOOL#1
INT: 13, INT#-1
REAL: 4.1415, REAL#18, 1.2E-6
TIME: T#1m3s250ms
TIME_OF_DAY: TOD#06:00:00

with the dot is of type REAL.

Single numerical constant without the dot is of type INT, whereas constant

Other types than INT, REAL are chosen by putting type name and sign # before the

number, e.g. DINT#-13, REAL#1.

Nondecimal numbers

Format of nondecimal number involves: 1) base of numerical system, e.g. 2, 8, 16,
etc., 2) sign #, 3) alphanumeric string as value. For instance, 2#11111111, 8#377,
16#FF denote 255 decimal. WORD#16#00FF is another option (leading zeroes are

not necessary).

Initial values

Default initial values are in the table:

Data type Initial value
ANY_BIT, ANY_INT | O
ANY_REAL 0.0
TIME T#0s
DATE D#0001-01-01
TIME_OF DAY TOD#00:00:00

52

DAY_AND_TIME DT#0001-01-01-00:00:00
STRING " (empty)

Other initial values are declared by means of assignment sign :=, for instance
lamp: BOOL := TRUE;

Attributes
CPDev package supports two attributes of variables:
RETAIN CONSTANT

RETAIN declares a retentive variable whose value is kept in memory during power
brake (for warm restart). CONSTANT variable cannot be changed. Initial value of
retentive variable applies for cold start only, whereas initial value of non-retentive
one is also used for warm restart.

Declarations of variables
IEC standard defines a few kinds of variable declarations:

VAR VAR_IN_OUT VAR_ACCESS
VAR_INPUT VAR_EXTERNAL
VAR_OUTPUT VAR_GLOBAL

VAR declares local variables and function block instances. VAR_INPUT,
VAR_OUTPUT and VAR _IN_OUT are used in function blocks and functions.
VAR_EXTERNAL declares usage of variables defined in Global variable list (or,
equivalently, by VAR _GLOBAL; see For advanced users). END VAR terminates
each kind of declaration.

Declarations VAR_EXTERNAL are allowed in programs only (not in function blocks
or functions). RETAIN attribute may appear in Global variable list (or VAR_GLOBAL),
in VAR and VAR_OUTPUT. VAR_ACCESS is not supported by CPDev.

Allocation of global variables

Allocation of single variable is determined by AT keyword followed by concatenation
of the sign %, size prefix and logical address, e.g.:

pump AT %B0009 : BOOL;

Global variable list involves Address option instead of AT. Size prefixes are shown in
the table.

Prefix Data types Size
B, X, none | BOOL, BYTE, SINT, USINT 1B
W WORD, INT, UINT 2B
D DWORD, DINT, UDINT, REAL, 4B
TIME, DATE, TIME_OF_DAY
L LWORD, LINT, ULINT, LREAL, 8B
DATE_AND_TIME

53

Prefixes B, X and leading zeroes of the address may be dropped (as %9for the pump
above). Group declaration

A, B, C AT %WOOOO:INT;
is equivalent to three individual declarations
A AT %WOOOO:INT; B AT %WOO0OL1:INT; C AT %WO0002: INT,
The keyword AT cannot be used for local variables which are located automatically.

Memory addresses

Compiler determines number of bytes from size prefix and assigns memory for the
variable beginning from the byte with address

byte address := logical address * size,
(logical address from Global variable list or AT declaration). For instance, declaration
counter AT %WO0O0O07: INT,;

means that counter occupies 2-7=14th byte (and 15th). So the addresses of first
bytes where variables are located have the following properties

Prefix Byte address
B, X, none | number after prefix
wW even number (address)
number divisible by 4
L number divisible by 8

Remark. Addresses of variables are needed to configure communication with
host computer. They are shown in Project report.

If global variable is declared without selecting Address option in Global variable list
(or without AT) the compiler locates it automatically filling empty spaces. Text auto
appears in the list.

If variables are declared in groups, some of the addresses may overlap since the
compiler checks whether address for first variable is free, and not the area for the
whole group. Warning appears in case of overlapping.

Function block declaration

As mentioned before, instances of function blocks are declared locally within VAR ...
END_VAR. For instance, if DELAY is going to be an instance of the TON block, it
must be declared by:

DELAY : TON;

54

Programming in ST

Programs, function blocks and functions

The following keywords begin and terminate declarations of POU units:

POU

Limiting keywords

Program PROGRAM ... END_PROGRAM

Function block

FUNCTION_BLOCK ...
END_FUNCTION_BLOCK

Function FUNCTION ... END_FUNCTION

A program may call (invoke) function blocks and functions; function block may call
other blocks or functions. Recursive calls are not allowed.

ST language statements

They involve assignment, selections, loops, exits, function and function block calls

(invocations).

*« Assignment: variable := expression;
Statements is terminated by semicolon ;.

e Selections: IF, CASE

IF

IF A>B THEN

B .= A,

ELSIF A<B THEN
A =B;

ELSE A =0; B:=0;
END _IF

Semicolons are not necessary after END_IF,
END_VAR and other ENDs.

CASE

Selection variable must by of integer type

CASE A OF

1: B:=1; A:=2;

2..10: A:=A+1;

B:=A*1000;
11,13,15..21: A:=A+2;
B:=A*10;

ELSE A:=1; B:=9999;
END_CASE

(ANY_INT, BYTE, WORD...). Entries are
constant values (or CONSTANT variables)
of selector type, otherwise Cannot match
primitive function... error appears (in line 0).

* Loops: FOR, WHILE, REPEAT

FOR WHILE REPEAT

counter := 0; WHILE stl1 OR st2 REPEAT

FOR i:=1 TO 10 DO DO B := B+1;

counter:= counter+i; pump = FALSE; UNTIL B>10

END_FOR alarm := TRUE; END_REPEAT
END_WHILE

55

If control variable of FOR loop must be increased by other number than 1, then
BY... component is included into the statement, as in

FORi:=1 TO 10BY 2 DO ... END_FOR
FORi:=10 TO 1 BY -1 DO ... END_FOR

(BY must be followed by a constant or CONSTANT variable).

« Exits: EXIT, RETURN
EXIT interrupts FOR, WHILE or REPEAT loop. RETURN provides early exit from a
function or function block (before END.

EXIT RETURN

WHILE i>0 DO FUNCTION LINE: REAL
| :=+1; VAR_INPUT

IF I>MAX_| THEN a,x,b: REAL;

EXIT; END_VAR

END_IF LINE:=a*x+b;

i=i-1; RETURN;

END_WHILE END_FUNCTION

* Function
Standard and system functions (next chapter) are called directly. To call user—
defined functions corresponding libraries must be imported. Function call
statement may look as follows:

Y := LINE(A1,X1,Bl);
e Function block

Suppose DELAY denotes instance of the standard timer TON. The following
statements invoke DELAY and transfer its outputs:

DELAY(IN:=_input, PT:=t#5s);
motor := DELAY.Q;
bargraph := DELAY.ET;

The outputs can also be transferred directly in the call statement by means of the
sign =>, i.e.:

DELAY(IN:=_input, PT:=t#5s, Q=>motor, ET=>bargraph) ;

Order of inputs and outputs does not matter in the call.

ST language operators

Expressions consist of operators and operands. The following table lists operators
with priorities in descending order.

Symbol Description Function
() parentheses -
F(X) function evaluation F(X)

o exponentiation EXPT
____________ - |arthmeticnegation | NEG
NOT Boolean negation NOT
____________ * | multiplication | MUL

/ division ~_biv.

MOD modulo MOD
____________ + Jaddiion | ADD
- subtraction SUB
<, >, <=, >= comparison LT,...,.GE
____________ = |equalty | EQ
<> inequality NQ
AND, & Boolean multiplication AND
XOR exclusive OR XOR
OR Boolean sum OR

The operators separated above by the dashed lines have the same priority, so they
are executed in the order defined by expression (from left to right). Operators can be
replaced by functions given in the table, as in:

x1 AND x2 AND(x1,x2)

Single—dimensional arrays

Compiler accepts single—dimensional arrays
declared as local variables. The arrays
cannot be wused as inputs or outputs.
Program on the left implements moving
average filter for variable A.

Program part

VAR
T:ARRAY][0..5] OF INT;
END_ VAR

FOR I:=1 TO5DO
T[I-1]:=T[I];
END_FOR

T[5]:=A; S:=0;

FOR I:=0 TO5DO
S:=S+TIl];
END_FOR

S:=5/I,

57

FUNCTIONS

IEC standard defines large set of functions divided into groups. Most of IEC functions

are available in CPDev (several data types are not supported, e.g. STRING).

Mathematic and logic functions

Group Name Operation I/O types
__ADD* | add
_.SUB | subtract
MUl multiply
Arithmetic DIV divide ANY_NUM
_MOD | modulo
EXPT L exponentiation |
- SINT, INT, DINT
NEG negation LINT. REAL
_ABS | absolute value
_SQRT | squareroot . .
ENC L natural logarithm
oG | logarithm base 10
_ EXP L natural exponential
Numeric SIN sine REAL, LREAL
_.COSs | cosine
TAN L tangent ..
ASIN L arcsine
_ACOS | arccosine
ATAN arc tangent
U ANDE L logic product
Boolean JORT L logicsum_ ANY_BIT
_XOR* | exclusive OR
NOT complement
Bit shift SHL ___________ Shlft'Eft,ZerO—ﬂ"ed _______ BYTE. WORD
SHR shift right, zero—filled i
-- c----o=-----t DWORD,
ROL L left—rotated, circular LWORD
ROR right—rotated, circular
S 2 U greater .
_GE | greaterorequal
Comparison | EQ | equal ANY
Lt L less
LB lessorequal
NE not equal
. ADD add
Time SUB subtract TIME

58

Explanations

— Star * after function name indicates varying number of arguments (up to 15).

— Bit shift functions have two arguments, ANY_BIT (without BOOL) and INT.

— Other operations on TIME data can be executed by conversion to REAL or DINT.

— Additional function RANDOML (not listed above) returns REAL number in 0.0...1.0
for rectangular probability distribution.

Selection functions

All elementary types are allowed (ANY).

Name Operation Description
_ SEL (G, INO, IN1)
SEL binary selector | OUT:=INO for G=FALSE

(one of two) | OUT:=IN1 for G=TRUE
Types: G — BOOL; INO, IN1 - ANY
MAX maximum MAX (IN1, IN2)
MIN minimum MIN (IN1, IN2)
- LIMIT (MN, IN, MX)
LIMIT- | limiter OUT:=MIN (MAX (IN, MN), MX)
MUX (K, INO, IN1, ...)
MUX* multiplexer OUT:=INi for K=i
Types: K - INT, INO, IN1, ... - ANY

MUX may switch up to 15 inputs.

Conversions

If the following table does not include a particular conversion, two steps are needed
with some intermediate type.

Input Function name

INT INT_TO_REAL INT_TO_DINT
INT_TO BOOL INT_ TO WORD
REAL_TO_INT REAL_TO_TIME

REAL REAL _TO LREAL
TRUNC ROUND

DINT DINT_TO_REAL DINT_TO_TIME
DINT_TO DWORD DINT_TO_INT

TIME TIME_TO_DINT TIME_TO REAL

BYTE BYTE_TO SINT

WORD WORD_TO _INT

BOOL BOOL TO INT

SINT SINT_TO BYTE
LREAL TO_REAL

LREAL TRUNC ROUND

59

LINT LINT_TO_LWORD
DWORD | DWORD_TO_DINT
LWORD LWORD_TO_LINT

Remarks. Depending on argument type, TRUNC and ROUND convert either to
DINT or LINT. DEPR_INT_TO_DINT (not listed) converts INT to DINT by
repeating MSB bit.

Real time

CPDev package provides:

— system time as TIME data

— RTC clock read and write

— daytime and date components

— days of the week.

System time and RTC functions are given in the table. CUR_TIME increments
system time up to 24 days (a little more), then resets it to ,negative” 24 days, and so
on. Time interval is determined as the difference between two CUR_TIME readings.

Name Function returns Result type
CUR_TIME current system time TIME
READ_RTC absolute time read from RTC clock DT
WRITE_RTC RTC clock update status BOOL
GET_TST absolute time of task start DT
TASK_CYCLE | task cycle duration TIME

Explanations

— READ_RTC, WRITE_RTC and GET_TST functions operate on DATE_AND_TIME
data. WRITE_RTC returns status flag of RTC update operation (RTC functions
depend on hardware platform).

— Task start time returned by GET_TST is used more often than the time returned by
READ_RTC.

— TASK_CYCLE returns value set in the project (Task properties window).

Daytime and date components

Structure of DATE_AND_TIME data in shown below. Successive bytes denote: CC —
hundredth parts of a second, SS — second, NN — minute, HH — hour, DD — day, MM —
month, YY+YY — year.

60

DATE_AND_TIME

CC|SS|NN| HH DD [MM| YY | YY
Byte 0O 1 2 3 {4 5 6 7
no. !

TIME_OF_DAY DATE

Functions from GET_HUNDSEC to GET_YEAR return INT value. Two types of
input arguments are supported.

Name Function returns Argument type
GET_HUNDSEC hundredths of second DT, TOD
GET SECOND second DT, TOD
GET MINUTE minute DT, TOD
GET HOUR hour DT, TOD
GET DAY day DT, D
GET MONTH month DT, D
GET_YEAR year DT, D
GET DAYOFWEEK | day of week DT, D

Status word

Bits of status word returned by GET_STATUS_WORD1 denote:

Bit Mask Description

0 16#01 | task cycle time exceeded in the last run

1 16#02 read array index out of range

2 16#04 | cold start (0 means normal operation or warm restart)

61

FUNCTION BLOCK LIBRARIES

CPDev package involves two libraries with function blocks, IEC 61131 and
Basic_blocks.

IEC_61131 library

Symbols of inputs and outputs are as in the IEC standard, so:

R — reset input (logic)

S — setinput

CLKt — rising edge at CLK input
Q — output of BOOL type

Initial values of all inputs are zero.

Bistable elements

RS RS — RS flip-flop
BOOL—S Qit-eoor | Q1 =NOT R1 AND (Q1,1 OR S)
BOOL— R1

SR SR — SR flip-flop
BOOL— S1 Qit-soor | Q1 =S1 OR (NOT R AND Q1,.,)
BOOL— R

SEMA SEMA - semaphore

sooL—{CcLAIM BUsY |-eoo. | BUSY = TRUE for CLAIM=TRUE
BOOL— RELEASE BUSY = FALSE for RELEASE=TRUE and CLAIM=FALSE

Edge detectors

R_TRIG R_TRIG - rising edge detector
BOOL—{ CLK QFBooL | Q=11 for CLK1

F TRIG F_TRIG - falling edge detector
BOOL—{ CLK QfsooL | Q=11 for CLK|

62

Counters

CTuU CTU — up counter
BOOL— CU QFBoo. | CV=CV+1 for CUt, CV<PV and R=FALSE
BOOL—{R cvi-mnt | CV=0 for R=TRUE
INT —{ PV Q=TRUE for CV=PV

CTD CTD - down counter
BOOL— CD QFsoo. | CV=CV-1 for CDt, CV>0 and LD=FALSE
BOOL—{ LD cvi nt | CV =PV for LD=TRUE
INT < PV Q=TRUE for CV=0

CTUD CTUD — up-down counter
BooL— CU Qul-sooL | CV=CV+1 for CU1r, CV<PV and R=LD=FALSE
BOOL— CD Qblsoo. | CV =CV-1 for CDt, CV>0 and R=LD=FALSE
BOOL—{ R cvwnt | CV=0 for R=TRUE
BOOL—{ LD CV =PV for LD=TRUE and R=FALSE
INT < PV QU =TRUE for CV=PV

QD =TRUE for CV=0

Timers
TON TON — on-delay timing
BOOL— IN Q —BOOL IN
PT
TIME | PT ET [~ TIME Q
ET_ |
TOF TOF — off-delay timing
BOOL— IN Q —BOOL IN
TIME — PT ETETve | Q | o;
ET_
TP TP — pulse timing
BOOL— IN Q —BOOL IN
TIME —{ PT ETHTiME | Q | PT | PT |
EeT_—~ |L_-L

Remark. Recall that READ _RTC, WRITE_RTC and GET_TST functions handle
RTC clock in CPDev.

63

Basic_blocks library

Notation:
R — reset input for arithmetic and logic, or to set another value
S — selection or switching input, set input for flip—flops
IN1 — rising edge at IN input; edge at tpis denoted by to:IN1
Q — output of BOOL type
OUT — output of REAL,TIME or other type.

Initial values of all inputs are zero.

Mathematic blocks

DIVI DIVI — division with limited divisor

REAL — IN1 ouT rea | OUT = IN1/IN2

REAL — IN2 LM — limit of IN2 before 0

REAL— LM If [IN2|<LM, then OUT=IN1/(xLM); £ is IN2 sign.
SQR SQR - square root with linear initial part

REAL— IN OUTFReEAL | OUT = +IN for IN>LM

REAL-LM OUT = IN/Y/LM for IN < LM

Switches, selectors

ASWI ASWI — analog switch
REAL — IN1 outhrear | OUT =IN1 for S =FALSE
REAL — IN2 OUT =IN2 for S=TRUE
BOOL— S
BSWI BSWI — binary switch
BOOL— IN1 Q —-BooOL Q =IN1 for S = FALSE
sooL - IN2 Q =1IN2 for S=TRUE
BOOL— S
AMEM AMEM - analog memory
REAL —{ IN ouTlrea. | OUT =IN for TRG = FALSE
BOOL— TRG OUT =IN(ty) for TRG = TRUE, to: TRG?
BMEM BMEM - binary memory
BOOL— IN QfsooL | Q=1IN for TRG = FALSE
BOOL—| TRG Q = IN(to) for TRG = TRUE, to: TRG1

64

COMP COMP - analog comparator with hysteresis
REAL — IN1 ofsoo. | Q =FALSE for (IN1-IN2) <-H/2
REAL — IN2 Q =TRUE for (IN1-IN2)> H/2
REAL— H
Flip—flops, pulsers

DEF DFF — D flip-flop
BOOL— D Qlsoor | Q=D for CLKt and R = FALSE
BOOL— CLK NnQBoo. | Q =FALSE for R =TRUE
BOOL— R NQ = NOT Q

TEF TFF — T flip-flop
BooL— T Qfsoor | Q =NOT Qp.1for CLKt and R = FALSE
BOOL— CLK NQBoo. | Q =FALSE for R=TRUE
BOOL—{ R NQ = NOT Q

JKFF JKFF — JK flip-flop
BOOL—{J QtsooL | Q =1(J,K) for CLK1
BOOL— CLK NQFBooL | NQ =NOT Q
BOOL— K

RSFF RSFF — RS flip-flop
BOOL—S oleoo. | As RS in IEC, but with additional NQ output (NOT Q).
BOOL— R1 NQ —BOOL

SRFF SRFF — SR flip-flop
BOOL— S1 oFsooL | As SR in IEC, but with additional NQ output (NOT Q).
BOOL— R NQ —BOOL

DELS DELS - delay by one step (cycle)
BOOL—| IN QrsooL | Qn =INp1

GENR GENR - alarm generator INL IN2 | Cycles
BOOL—| IN1 QlsooL |Q=1111 for R = FALSE 8 (1) %
BOOL—{ IN2 Q =FALSE for R=TRUE 1 0 4
BOOL— R Frequency determined by IN1, IN2. 1 1 8

PDUR PDUR - pulse duration
BOOL—| IN outTtve | OUT =0 for INt or R =TRUE
BOOL— R OuUT =t for IN=TRUE and R = FALSE

65

TOTI — totalizer

TOTI
REALIN QIBOOL | Q =14 (impulse) for jt INY(7)dr = A
BOOL— R to
REAL — DL R — integral reset

DL — time interval A for integration

Filters

FILT FILT — lag filter
REALTIIN OUTREAL | oUuT = IN for R =FALSE
TIME T TS +1
BOOL—R OUT =IN for R=TRUE

DIFR DIFR — lead filter (differentiation)
REAL—{ IN OUT [~ REAL OUT = Ts IN for R = FALSE
TIME T TS +1
BOOL— R OUT =IN for R=TRUE
Others

DEBA DEBA - dead-band
REAL—IN outrrea | OUT =0 for |IN| < DB
REAL—| DB OUT=IN+DB for [IN| = DB (- for IN>0, + for IN<O)

OUT =IN for DB<0

LIMT LIMT — limiter
REAL— IN ouTkrea. | OUT = 1IN for MN<IN<MX
REAL —{ MN OUT = MN for IN<KMN
REAL - MX OUT = MX for IN>MX

RAND RAND — random
BooL—{S ouTreat | OUT = random
REAL— IN1 S = FALSE — normal distribution N(IN1, IN2)
REAL —{ IN2 IN1 — average value

IN2 — standard deviation

S =TRUE - rectangular distribution <IN1, IN2>
IN1 — low limit
IN2 — upper limit

Remark. ASWI, BSWI and LIMT blocks can be replaced by SEL and LIMIT

functions (see earlier). SEL automatically recognizes type of inputs.

66

System blocks
They are "always available”, so no library is needed.

* Alarms
R — reset input
Q - alarm output

Alarm condition is indicated by TRUE at the output Q. Setting R to TRUE cancels
the alarm.

Alarms blocks

APON
sooL R oleoo. | Warm restart (after power brake)

ASTR
sooL— R olsooL | Cold start (memory cleared, initial values)

Cold start is also initiated when memory test detects data error. Global variables
are then set to initial values.

Example

Declarations

VAR
STATE:APON; RESET:BOOL; ALARM:BOOL;
END_VAR;

Usage
RESET:=FALSE; STATE(R:=RESET); ALARM:=STATE.Q;

67

SUPPLEMENTS

Correcting variable list

Suppose the Global variable list looks initially as follows:

Global variable list =13
Wariahle paraneters

MName: | | Type: | v|

Attributes: [] Constant [] Retain [] Address: I:I

[Initial walue: |:| Camment: | |

Declared warniables

Mame Type Attributes Address
mm START BOOL global, hardware 140 #0000 =>0
mm STOF BOOL global, hardware 1/0 200070 =31
mm ALARM BOOL global, hardware 1/0 20002 = 2

* Incorrect address
New group of two variables, MOTOR and PUMP, is declared, the first one with
wrong address 0002. Clicking Add supplements the list with the two variables,
however the line MOTOR is shown in red indicating address collision.

wm START BOOL global, hardware 1/0 20000 =10

mm STOP BOOL global, hardware 1/0 Z0001 =1

wm SLAF M BOOL global, hardware 1/0 =Z0002 =» 2
n BOOL global, hardweare 10

wm PUMF BOOL global, hardware 1/0 Z0003 =3

As in the START_STOP project, MOTOR and PUMP should be located at 0008,
0009.

» Group selection
Select the lines to be corrected, the second one with Shift or Ctrl. Names of
variables, types and addresses appear in the upper cells (cell Type would be
empty for different types).

wrm ALARH BOOL alobal, hardware 1/0 0002 => 2
B 14O TOR BOOL
PUMP BOOL

glabal, hardware [0
glabal, hardware [0

» Corrections
Selection of Address option automatically displays first free address for the
colliding MOTOR, so 0004 here.

Address: | 0oo4 |

If you pressed Replace now, PUMP would remain at 0003 and MOTOR placed at
0004. However, we want 0008 instead of 0004.

Address: | noos |

68

Pressing Replace corrects the variable list accordingly.

mm START BOOL global, hardware 140 *0000=:0
wm STOF BOOL global, hardware 140 %0001 =x1

wm ALARM BOOL glabal, hardware /0 #0002 =» 2
010 o

MOTOR BOOL global, hardware 1/
PLIMP BOOL glabal, hardware /0

Note that five bytes from 0003 to 0007 remain empty.

Filling empty areas

Suppose we need another REAL variable called ANALOG. Enter name and type,
select Address option. First free address D0O0O01 is then indicated.

Global variable list
Wariable parameters

Name: | ANALOG Typs: |REAL v|

Attibutes: [] Constant [] Retain Address: | DO0OT

Since ANALOG occupies four bytes (REAL), so the address of its first byte is
0001*4=0004. Pressing Add displays the following list

wm START BOOL glabal, hardware 140 #0000 =:0

mm STOF BOOL global, hardware /0 %0007 =1
wm ALARM BOOL glabal, hardware /0 #0002 =» 2
o MOTOR BOOL global, hardware /0 %0008 => 8
wm PUMP BOOL glabal, hardware /0 #0008 =:9
mm AMALOG REAL global, hardware /0 200001 =» 4

Former empty area is almost full now.

Marks

Small rectangles with digits indicating portions of large programs, to improve clarity
and navigation, are called marks (or bookmarks). Portion of a code with two marks is
shown below.

4] 0ls MOTOR := [(START OR MOTOR)
017 AND NOT STOP AND MOT ALARM:
als

2| 013 DELAY ON(IN:=MOTOR, PT:=t#5=):
0z0 DELAY OFF (IN:= DELLY ON.Q, PT:=t#5=):
0zl PUMP := DELAY OFF.Q:

The following shortcuts handle marks:
e Shift + Ctrl +0,...,9 — create a mark 0,...,9 at the line indicated by the cursor
e« Ctrl+0,...,9 — place cursor at the line with mark 0,...,9

69

Key shortcuts

Shortcuts Operation Shortcuts Operation
Ctrl+Up Scroll line up Shift+Ctrl+l Block indent
Ctrl+Down Scroll line down Shift+Ctrl+U Block unindent
Ctrl+PgUp Scroll screen up Ctrl+M Break line
Ctrl+PgDown | Scroll screen down Ctrl+H Insert line
Ctrl+Home Editor top Ctri+T Delete word
CtrlI+End Editor end Ctri+G Delete line
Ins Toggle insert/enter Shift+Ctrl+Y Delete till end of line

mode
Ctrl+Ins Copy selected part Ctrl+0,...,9 Go to mark 0,...,9
Shift+Del Delete selected part Shift+Ctrl+0,...,9 | Set mark 0,...,9
Shift+Ins Paste from clipboard Shift+Ctrl+N Select by lines
Ctrl+Bksp Remove last word Shift+Ctrl+C Select by columns
Alt+Bksp Undo Shift+Ctrl+L Select full lines
Shift+Alt+Bksp | Redo Shift+Ctrl+B Match brackets

Errors, warnings, hints

Message list

Bottom area of interface window may show the following messages:

Icon Meaning Icon Meaning
(3] Error €3 Information
A Warning) Question
B Hint (none) Nonrecognized text

Icons from left table are used by the compiler. An error interrupts compilation,
warning indicates possibility of erroneous code (or another reason, e.g. outdated
library). A hint may point out that global variable is hidden by local one with the same
name.

Message format:
[icon] filename.cst@code_line message text
Context menu clears message list or removes some of its components.
Right table is reserved for future use in languages supported by .NET (e.g. C#).

Code line

A .cst file indicated in a message involves program code in ST language created by
Project > Build. Double clicking the message opens POU editor with cursor at
erroneous line. Sometimes however, the error may be somewhere else. If the

70

compiler is unable to find erroneous line, it indicates the line with number 0 or -1 (for
instance, when task is not declared).

Omitting erroneous objects

The compiler operates similarly to a stack. So an error in a component of IF
instruction in a function block generates three messages: 1) error in the component,
2) error in IF, 3) error in function block. In addition, if the option Omit erroneous POU
objects during compilation has been selected, fourth message warns that the next
object is being compiled without completing the previous one. In this next object,
even for correct code, an error may be detected due to omitting the earlier code.

Autocomplete

Compilation of the project is a condition to display autocomplete list. It is convenient
to compile the project after declaration of POUs to include datatype names, standard
functions, etc. into the list. Second compilation should follow declaration of variables
(clear message list before).

Library update

While opening an old project a warning may appear with information that library
version of the project is different than the one being now used by CPDev. The library
reference will be automatically updated if, while closing the project, you answer Yes
to the question Save changes in the project ...

Compiler directives

Directives are optional commands for the compiler to simplify coding, determine
access to variables, save comments, etc. Format is the same as for standard
comments except additional sign $ after initial (*. Four most useful directives are
described below.

Directive Meaning
Declaration VAR_EXTERNAL (*$AUTO*) END_VAR automatically
(*$AUTO*) inserts declarations from Global variable list into the program.

Variable declared in a program, as e.g. START: BOOL
(*$READ?) (*$READ?*), is considered read only in this program. Other
programs may write into it, however.

Variable declared in a program, as e.g. PUMP: BOOL
(*$WRITE*) | (*$WRITE*), is considered write only in this program. Other
programs may read it, however.

(*$VMASM*) Part of a program written in Virtual Machine language.

Other directives govern internal operations of the compiler. Directives are highlighted
by the editor.

71

Simulation session

All data for simulation, i.e. variable list, individual windows and control panels, can be
saved in a file to repeat simulation session in future.

- File > Save session or click &
Save as window involves default filename with .scp extension.

5 START_STOP -

E’l Skart_Stop.scp

* Resuming the session
File > Open session or click =

Session may be also resumed while opening .dcp file (provided that .scp is in the
same folder). Answer Yes to the question Do you want to open saved session as
well? One of CPSim Program options enables automatic resuming.

Save results

Simulation results may be saved in an .out file by selecting Trace > Log output data.
Filename is determined in Program options (Output file tab with L-J and Path).
Symbol i in the status bar indicates logging. The .out file is a text file with variable
values written in successive cycles. Variables from individual windows are logged
only. Logging may be stopped by clicking the variable window with right button.

A part of Start_Stop.out file is shown below. START is set in 2nd and STOP in 11th
second.

Ti e START STOP ALARM MOTOR PUWP
200 0 0 0 0 0
400 0 0 0 0 0
2000 1 0 0 1 0
11000 1 1 0 0 1
16600 1 1 0 0 0

Time is given in milliseconds (200 ms task cycle). Columns are separated by Tab.
The file can be processed by MS Excel.

Simulation controlled automatically

By selecting Trace > Read input data the simulator automatically sets values of
variables from .inp file indicated in Program options (Output file tab). It is a text file
(prepared earlier) of the same format as .out. Negative time terminates simulation.

Ti ne START STCOP ALARM
0 1 0 0
10000 0 1 0

72

12000
20000
30000
35000
- 40000

=)
[eoNeNel
O OO

CPDev files

Programs and libraries of CPDev package exchange data through files with
extensions given in the table. Name of .xml basic file is default name for the others.

Extension Content
________ xml | Basicfile of the project
oooosest] Program code in ST language (textfile)
_________ hcp | Project header created during compilation
.dcp Intermediate file for simulator and configurer created during
__________________________ compilation
XCp Binary code of compiled program for virtual machine VM
(runtime)
Icp Semi—compiled library
-SCP Simulation session
np Input data for session executed automatically (text file)
.out Session results (text file), e.g. for MS Excel
Xmc Communication parameters (for SMC controller)
html Project report
.htm Communication report (for SMC: parameters, task table)

The .cst and .xcp files are created automatically during compilation. Recall that at the
beginning it is convenient to create project folder for all files.

73

SOURCE CODES OF STANDARD BLOCKS

Implementations of IEC 61131-3 standard blocks are presented below, one for each
of four groups. They may be of some help while learning ST programming using
CPDev.

* SR flip—flop

FUNCTION_BLOCK SR
VAR_INPUT
S1: BOOL; (* set input *)
R: BOOL,; (* reset input *)
END_VAR
VAR_OUTPUT
Q1: BOOL; (* output *)
END_VAR
Q1 :=S1 OR (NOT R AND Q1);
END_FUNCTION_BLOCK

* R_TRIG rising edge detector

FUNCTION_BLOCK R_TRIG
VAR_INPUT

CLK : BOOL; (* input *)
END_VAR
VAR_OUTPUT

Q : BOOL,; (* output *)
END_VAR
VAR

CLKp : BOOL := FALSE;
END_VAR
Q := CLK AND NOT CLKp;
CLKp := CLK;
END_FUNCTION_BLOCK

(* previous value of CLK input ¥

* CTU up—counter

FUNCTION_BLOCK CTU
VAR_INPUT

CU : BOOL;

R : BOOL;

PV :INT
END_ VAR
VAR_OUTPUT

Q : BOOL;

CV : INT;
END_ VAR
VAR

CUp : BOOL := FALSE;

END_VAR

IF R THEN
CV :=0;

ELSE

IF (CU AND NOT CUp) THEN
IF (CV < PV) THEN
CV:=CV +1;

END_IF
END_IF
END_IF
Q =CV>=PV,

(* up—count input
(* counter reset
(* preset value — upper

(* output set when limit
(* current value

(* previous value of CU

(*if R = TRUE

(* if rising edge at

(* increment

(*if CV>=PV, thenQ :=

74

*)
)

limit ¥

reached *)

*)

input %)

*)

CUinput %)

")

TRUE ¥

CUp:=CU; (* save CU as previous *)
END_FUNCTION_BLOCK

* TP pulse timer (pulse of preset duration)
FUNCTION_BLOCK TP

VAR
stime: TIME; (* start time *)
END_VAR
VAR_INPUT
IN: BOOL; (* input *)
PT: TIME; (* preset time *)
END_VAR
VAR_OUTPUT
Q: BOOL; (* output *)
ET: TIME; (* elapsed time *)
END_VAR
IF NOT Q THEN (* state 0 or 2; *)
IF IN THEN (* if rising edge at IN or waiting for IN=0%*)
IF ET = t#0s THEN (*if rising edge at | N *)
IF PT > t#0s THEN (* state 1: pulse time co unt *)
stime := CUR_TIME(); (* save star t time *)
Q := TRUE; (* set the output Q *)
END_IF
ELSE (* state 2: wait for IN=0 *)
Q := FALSE; (*reset Q *)
END_IF
ELSE (* state 0: wait for rising edge at IN *)
ET := t#0s; (* reset elapsed time *)
END_IF

ELSE (* state 1: pulse time coun t *)
ET := CUR_TIME() - stime; (* elapsed time updat e)
IF ET >=PT THEN (* if preset value re ached *)
Q := FALSE; (* reset Q)
ET := PT,; (* elapsed := preset *)
END_IF
END_IF

END_FUNCTION_BLOCK

75

